【題目】如圖1,拋物線l1:y=﹣x2+bx+3x軸于點(diǎn)A、B,(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C,其對(duì)稱軸為x=1,拋物線l2經(jīng)過(guò)點(diǎn)A,與x軸的另一個(gè)交點(diǎn)為E(5,0),交y軸于點(diǎn)D(0,﹣5).

(1)求拋物線l2的函數(shù)表達(dá)式;

(2)P為直線x=1上一動(dòng)點(diǎn),連接PA、PC,當(dāng)PA=PC時(shí),求點(diǎn)P的坐標(biāo);

(3)M為拋物線l2上一動(dòng)點(diǎn),過(guò)點(diǎn)M作直線MN∥y軸(如圖2所示),交拋物線l1于點(diǎn)N,求點(diǎn)M自點(diǎn)A運(yùn)動(dòng)至點(diǎn)E的過(guò)程中,線段MN長(zhǎng)度的最大值.

【答案】(1)拋物線l2的函數(shù)表達(dá)式;y=x2﹣4x﹣5;(2)P點(diǎn)坐標(biāo)為(1,1);(3)在點(diǎn)M自點(diǎn)A運(yùn)動(dòng)至點(diǎn)E的過(guò)程中,線段MN長(zhǎng)度的最大值為12.5.

【解析】

(1)由拋物線l1的對(duì)稱軸求出b的值,即可得出拋物線l1的解析式,從而得出點(diǎn)A、點(diǎn)B的坐標(biāo),由點(diǎn)B、點(diǎn)E、點(diǎn)D的坐標(biāo)求出拋物線l2的解析式即可;(2)CHPG交直線PG于點(diǎn)H設(shè)點(diǎn)P的坐標(biāo)為(1,y),求出點(diǎn)C的坐標(biāo),進(jìn)而得出CH=1,PH=|3﹣y |,PG=|y |,AG=2,PA=PC可得PA2=PC2,由勾股定理分別將PA2、PC2CH、PH、PG、AG表示,列方程求出y的值即可;(3)設(shè)出點(diǎn)M的坐標(biāo),求出兩個(gè)拋物線交點(diǎn)的橫坐標(biāo)分別為﹣1,4,①當(dāng)﹣1<x≤4時(shí),點(diǎn)M位于點(diǎn)N的下方,表示出MN的長(zhǎng)度為關(guān)于x的二次函數(shù),在x的范圍內(nèi)求二次函數(shù)的最值;②當(dāng)4<x≤5時(shí),點(diǎn)M位于點(diǎn)N的上方,同理求出此時(shí)MN的最大值,取二者較大值,即可得出MN的最大值.

(1)∵拋物線l1y=﹣x2+bx+3對(duì)稱軸為x=1,

x=﹣=1,b=2,

∴拋物線l1的函數(shù)表達(dá)式為:y=﹣x2+2x+3,

當(dāng)y=0時(shí),﹣x2+2x+3=0,

解得:x1=3,x2=﹣1,

A(﹣1,0),B(3,0),

設(shè)拋物線l2的函數(shù)表達(dá)式;y=ax﹣5)(x+1),

D(0,﹣5)代入得:﹣5a=﹣5,a=1,

∴拋物線l2的函數(shù)表達(dá)式;y=x2﹣4x﹣5;

(2)CHPG交直線PG于點(diǎn)H,

設(shè)P點(diǎn)坐標(biāo)為(1,y),由(1)可得C點(diǎn)坐標(biāo)為(0,3),

CH=1,PH=|3﹣y |,PG=|y |,AG=2,

PC2=12+(3﹣y2=y2﹣6y+10,PA2= =y2+4,

PC=PA

PA2=PC2,

y2﹣6y+10=y2+4,解得y=1,

P點(diǎn)坐標(biāo)為(1,1);

(3)由題意可設(shè)Mx,x2﹣4x﹣5),

MNy軸,

Nx,﹣x2+2x+3),

令﹣x2+2x+3=x2﹣4x﹣5,可解得x=﹣1x=4,

①當(dāng)﹣1<x≤4時(shí),MN=(﹣x2+2x+3)﹣(x2﹣4x﹣5)=﹣2x2+6x+8=﹣2(x2+,

顯然﹣1<≤4,

∴當(dāng)x=時(shí),MN有最大值12.5;

②當(dāng)4<x≤5時(shí),MN=(x2﹣4x﹣5)﹣(﹣x2+2x+3)=2x2﹣6x﹣8=2(x2

顯然當(dāng)x時(shí),MNx的增大而增大,

∴當(dāng)x=5時(shí),MN有最大值,MN=2(5﹣2=12.

綜上可知:在點(diǎn)M自點(diǎn)A運(yùn)動(dòng)至點(diǎn)E的過(guò)程中,線段MN長(zhǎng)度的最大值為12.5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程(k﹣1)x2﹣2kx+k+2=0有兩個(gè)不相等的實(shí)數(shù)根.

(1)求k的取值范圍;

(2)若x1,x2是一元二次方程的兩個(gè)實(shí)數(shù)根,且滿足=﹣2,求k的值,并求此時(shí)方程的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:

年上半年出臺(tái)規(guī)定,將用空氣質(zhì)量指數(shù)替代原有的空氣污染指數(shù).空氣質(zhì)量按照空氣質(zhì)量指數(shù)大小分為六級(jí),相對(duì)應(yīng)空氣質(zhì)量的六個(gè)類別,指數(shù)越大、級(jí)別越高,說(shuō)明污染的情況越嚴(yán)重,對(duì)人體的健康危害也就越大,從一級(jí)優(yōu),二級(jí)良,三級(jí)輕度污染,四級(jí)中度污染,直至五級(jí)重度污染,六級(jí)嚴(yán)重污染.將空氣質(zhì)量達(dá)到一級(jí)優(yōu),二級(jí)良的天氣定義為達(dá)標(biāo)天氣.

北京市環(huán)保局日上午向媒體通報(bào):

年北京空氣質(zhì)量狀況,與年相比,年,北京各項(xiàng)污染物同比均有所改善.據(jù)報(bào)導(dǎo),年北京空氣質(zhì)量持續(xù)改善,年均濃度微克/立方米,同比下降,但是這一數(shù)值依舊超出國(guó)家標(biāo)準(zhǔn)年,北京空氣質(zhì)量達(dá)標(biāo)天數(shù)天,較年增加天,其中一級(jí)優(yōu)的天數(shù)增加了天,年北京有重污染天(含嚴(yán)重污染天)天.其中月至月底,北京全市濃度同比下降,空氣質(zhì)量達(dá)標(biāo)天數(shù)較去年同期增加天,空氣重污染天數(shù)同比減少天.年本市空氣質(zhì)量達(dá)標(biāo)天數(shù)較年增加天,其中PM2.5一級(jí)優(yōu)的天數(shù)增加了天.年本市重污染天(含嚴(yán)重污染天)數(shù)占全年總天數(shù)的,其中在月中發(fā)生重污染天,占月和月天數(shù)的,與年同期相比增加天.年北京市一級(jí)優(yōu)的天數(shù)達(dá)到天,較年減少了天,但導(dǎo)致的重污染天(含嚴(yán)重污染天)數(shù)明顯減少了天,從年的天下降為天.

根據(jù)以下材料解答下列問(wèn)題:

年本市空氣質(zhì)量達(dá)標(biāo)天數(shù)為__________天;年平均濃度的國(guó)家標(biāo)準(zhǔn)限值是__________微克/立方米;(結(jié)果保留整數(shù)).

)選擇統(tǒng)計(jì)表或統(tǒng)計(jì)圖,將一級(jí)優(yōu)天數(shù)的情況表示出來(lái);預(yù)估年北京市一級(jí)優(yōu)天數(shù)約__________天.

)小明從報(bào)道中發(fā)現(xiàn)月至月底,北京全市濃度同比下降,空氣質(zhì)量達(dá)標(biāo)天數(shù)較去年同期增加天,空氣重污染天數(shù)同比減少天,他由此推斷年全年的達(dá)標(biāo)天數(shù)的年增長(zhǎng)率將比年全年的達(dá)標(biāo)天數(shù)的年增長(zhǎng)率出現(xiàn)大幅增長(zhǎng),你同意他的結(jié)論嗎?并說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一元二次方程(a+1)x2﹣ax+a2﹣a﹣2=0的一個(gè)根與方程(a+1)x2+ax﹣a2+a+2=0的一個(gè)根互為相反數(shù),那么(a+1)x2+ax﹣a2+a+2=0的根是( 。

A. 0,﹣ B. 0, C. ﹣1,2 D. 1,﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)口袋中有3個(gè)大小相同的小球,球面上分別寫有數(shù)字1、2、3.從袋中隨機(jī)地摸出一個(gè)小球,記錄下數(shù)字后放回,再隨機(jī)地摸出一個(gè)小球.

1)請(qǐng)用樹(shù)形圖或列表法中的一種,列舉出兩次摸出的球上數(shù)字的所有可能結(jié)果;

2)求兩次摸出的球上的數(shù)字和為偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三位運(yùn)動(dòng)員在相同條件下各射靶次,每次射靶的成績(jī)?nèi)缦拢?/span>

甲:,,,,,,,,

乙:,,,,,,,,

丙:,,,,,,

1)根據(jù)以上數(shù)據(jù)完成下表:

平均數(shù)

中位數(shù)

方差

__________

__________

__________

2)根據(jù)表中數(shù)據(jù)分析,哪位運(yùn)動(dòng)員的成績(jī)最穩(wěn)定.并簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系中,長(zhǎng)方形的項(xiàng)點(diǎn)的坐標(biāo)是.

1)直接寫出點(diǎn)坐標(biāo)(______,______),點(diǎn)坐標(biāo)(______,______);

2)如圖,D中點(diǎn).連接,,如果在第二象限內(nèi)有一點(diǎn),且四邊形的面積是面積的倍,求滿足條件的點(diǎn)的坐標(biāo);

3)如圖,動(dòng)點(diǎn)從點(diǎn)出發(fā),以每鈔個(gè)單位的速度沿線段運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā).以每秒個(gè)單位的連度沿線段運(yùn)動(dòng),當(dāng)到達(dá)點(diǎn)時(shí),同時(shí)停止運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間是,在,運(yùn)動(dòng)過(guò)程中.當(dāng)時(shí),直接寫出時(shí)間的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1是一個(gè)重要公式的幾何解釋.請(qǐng)你寫出這個(gè)公式: ;

2)如圖2,已知,,且三點(diǎn)共線.

試證明;

3)勾股定理是幾何學(xué)中的明珠,千百年來(lái),人們對(duì)它的證明趨之若騖,有資料表明,關(guān)于勾股定理的證明方法已有500余種.課本中介紹了比較有代表性的趙爽弦圖.

伽菲爾德(Garfield1881年任美國(guó)第20屆總統(tǒng))利用圖2證明了勾股定理(187641日,發(fā)表在《新英格蘭教育日志》上),請(qǐng)你寫出該證明過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校八年級(jí)共有三個(gè)班,都參加了學(xué)校舉行的書(shū)法繪畫大賽,三個(gè)班根據(jù)初賽成績(jī)分別選出了10名同學(xué)參加決賽,這些選手的決賽成績(jī)(滿分100)如下表所示:

決賽成績(jī)(單位:分)

八年1

80  86  88  80  88  99  80  74  91  89

八年2

85  85  87  97  85  76  88  77  87  88

八年3

82  80  78  78  81  96  97  87  92  84

解答下列問(wèn)題:

(1)請(qǐng)?zhí)顚懴卤恚?/span>

平均數(shù)()

眾數(shù)()

中位數(shù)()

 八年1

85.5

   

87

 八年2

85.5

85

   

 八年3

   

78

83

(2)請(qǐng)從以下兩個(gè)不同的角度對(duì)三個(gè)班級(jí)的決賽成績(jī)進(jìn)行

從平均數(shù)和眾數(shù)相結(jié)合看(分析哪個(gè)班級(jí)成績(jī)好些).

從平均數(shù)和中位數(shù)相結(jié)合看(分析哪個(gè)班級(jí)成績(jī)好些).

(3)如果在每個(gè)班級(jí)參加決賽的選手中分別選出3人參加總決賽,你認(rèn)為哪個(gè)班級(jí)的實(shí)力更強(qiáng)一些?請(qǐng)簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案