【題目】如圖1,菱形ABCD中,已知∠BAD=120°,∠EGF=60°,∠EGF的頂點G在菱形對角線AC上運動,角的兩邊分別交邊BC,CD于點E,F(xiàn).

(1)如圖2,當(dāng)頂點G運動到與點A重合時,求證:EC+CF=BC;

(2)知識探究:①如圖3,當(dāng)頂點G運動到AC中點時,探究線段EC,CF與BC的數(shù)量關(guān)系;
②在頂點G的運動過程中,若 =t,請直接寫出線段EC,CF與BC的數(shù)量關(guān)系(不需要寫出證明過程);

(3)問題解決:如圖4,已知菱形邊長為8,BG=7,CF= ,當(dāng)t>2時,求EC的長度.

【答案】
(1)證明:如圖2中,在CA上取一點M,使得CM=CE,連接EM.

∵四邊形ABCD是菱形,∠BAD=120°,

∴AB=BC=CD=AD,∠CAB=∠CAD=60°,

∴△ABC,△ACD都是等邊三角形,

∴∠AB=AC,∠BAC=∠EAF=60°,∠B=∠ACF=60°,

∴∠BAE=∠CAF,

在△BAE和△CAF中, ,

∴△ABE≌△ACF,

∴AE=AF,∵∠EAF=60°,

∴△AEF是等邊三角形,

∵CE=CM,∠ECM=60°,

∴△ECM是等邊三角形,

∴∠AEF=∠MEC=60°,AE=EF,EM=EC,

∴∠AEM=∠FEC,

在△AEM和△FEC中,

,

∴△AEM≌△FEC,

∴AM=CF,

∴BC=AC=AM+CM=EC+CF


(2)解:①結(jié)論:EC+CF= BC.

理由:如圖3中,取BC中點P,CD中點Q,連接PG、GQ.

∵AG=GC,CPB,CQ=DQ,

∴PG∥AB,GQ∥QD,

∴∠CPG=∠B=60°,∠CGP=∠CAB=60°,

∴△CPG是等邊三角形,同理可證△CQG是等邊三角形,

由(1)可知,CE+CF=PC= BC.

②結(jié)論:CE+CF=

理由:如圖4中,作GP∥AB交BC于P,GQ∥AD交CD于Q.

∴PG∥AB,GQ∥QD,

∴∠CPG=∠B=60°,∠CGP=∠CAB=60°,

∴△CPG是等邊三角形,同理可證△CQG是等邊三角形,

由(1)可知,CE+CF=PC=CG,

∵AC=BC=tCG,

∴CE+CF=


(3)如圖4中,作BM⊥AC于M.

∵t>2,

∴點G在線段CM上,

在Rt△ABM中,∵∠BMC=90°,BM= ×8=4 ,BG=7,

∴MG= = =1,

∵CM=MA=4,

∴CG=CM﹣MG=3,

由(1)可知,CG=CE+CF,

∴CE=CG﹣CF=3﹣ =


【解析】(1)如圖2中,在CA上取一點M,使得CM=CE,連接EM.首先證明△ABE≌△ACF,再證明△AEM≌△FEC,即可解決問題.(2)①結(jié)論:EC+CF= BC.如圖3中,取BC中點P,CD中點Q,連接PG、GQ.利用(1)的結(jié)論解決問題.②結(jié)論:CE+CF= .如圖4中,作GP∥AB交BC于P,GQ∥AD交CD于Q.利用(1)的結(jié)論解決問題.(3)如圖4中,作BM⊥AC于M.利用(1)的結(jié)論:CG=CE+CF,求出CE即可解決問題.
【考點精析】掌握全等三角形的性質(zhì)和菱形的性質(zhì)是解答本題的根本,需要知道全等三角形的對應(yīng)邊相等; 全等三角形的對應(yīng)角相等;菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BC為半圓的直徑,O為圓心,D是弧AC的中點,四邊形ABCD的對角線AC,BD交于點E,BC= ,CD= ,則sin∠AEB的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知EF//AD 1=∠2, BAC70°.求∠AGD的度數(shù)(將以下過程填寫完整)

解:∵EF//AD

∴∠2

又∵∠1=∠2

∴∠1=∠3

AB//

∴∠BAC 180°

又∵∠BAC70°

∴∠AGD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=1,BC=2,BC在x軸上,一次函數(shù)y=kx﹣2的圖象經(jīng)過點A、C,并與y軸交于點E,反比例函數(shù)y= 的圖象經(jīng)過點A.

(1)點E的坐標(biāo)是;
(2)求反比例函數(shù)的解析式;
(3)求當(dāng)一次函數(shù)的值小于反比例函數(shù)的值時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)所示,∠AOB、∠COD都是直角.

(1)試判斷∠AOC與∠BOD的大小關(guān)系,并說明理由;

(2)若∠BOC=60°,求∠AOD的度數(shù);

(3)猜想∠AOD與∠BOC在數(shù)量上是相等,互余,還是互補的關(guān)系,并說明理由;

(4)當(dāng)∠COD繞著點O旋轉(zhuǎn)到圖(2)所示位置時,你在(3)中的猜想還成立嗎?請用你所學(xué)的知識加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在△ABC,BC=a,AC=b,AB=c,若∠C=90°,則有a2+b2=c2;如圖(2),△ABC為銳角三角形時,小明猜想a2+b2>c2,理由如下:

設(shè)CD=x,在RtADC中,AD2=b2-x2

RtADB,AD2=c2-(a-x)2,

b2-x2=c2-(a-x)2,所以a2+b2=c2+2ax,

因為a>0x>0,所以2ax>0,所以a2+b2>c2,

所以當(dāng)△ABC為銳角三角形時a2+b2>c2.

所以小明的猜想是正確的.

(1)請你猜想,當(dāng)△ABC為鈍角三角形時,a2+b2c2的大小關(guān)系;

(2)證明你猜想的結(jié)論是否正確.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上兩點AB所表示的數(shù)分別為-3、1.

(1)寫出線段AB的中點M所對應(yīng)的數(shù);

(2)若點PB出發(fā),以每秒2個單位長度的速度向左運動,運動時間為:

①用含的代數(shù)式表示點P所對應(yīng)的數(shù);

②當(dāng)BP=2AP,值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某兒童游樂園門票價格規(guī)定如下表:

購票張數(shù)

1~50

51~100

100張以上

每張票的價格

13

11

9

某校七年級(1)、(2)兩個班共102人今年6.1兒童節(jié)去游該游樂園,其中(1)班人數(shù)較少,不足50人。經(jīng)估算,如果兩個班都以班為單位購票,則一共應(yīng)付1218元。問:

(1)兩個班各有多少學(xué)生?

(2)如果兩班聯(lián)合起來,作為一個團體購票,可以節(jié)省多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,D為△ABC的邊AB的延長線上一點,過DDF⊥AC,垂足為F,交BCE,BD=BE,求證:△ABC是等腰三角形.

查看答案和解析>>

同步練習(xí)冊答案