【題目】如圖,在△AOB中,∠ABO=90°,OB=4,AB=8,直線y=-x+b分別交OA、AB于點(diǎn)C、D,且ΔBOD的面積是4.
(1)求直線AO的解析式;
(2)求直線CD的解析式;
(3)若點(diǎn)M是x軸上的點(diǎn),且使得點(diǎn)M到點(diǎn)A和點(diǎn)C的距離之和最小,求點(diǎn)的坐標(biāo).
【答案】(1)y=2x; (2);(3)點(diǎn)M的坐標(biāo)為(,0).
【解析】
(1)先求出點(diǎn)A的坐標(biāo),然后設(shè)直線AO的解析式為y=kx,用待定系數(shù)法求解即可;
(2)由面積法求出BD的長,從而求出點(diǎn)D的坐標(biāo),然后帶入y=-x+b求解即可;
(3)先求出點(diǎn)C的坐標(biāo),作點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)E,此時(shí)M到A、C的距離之和最小,求出直線AE的解析式,即可求出點(diǎn)M的坐標(biāo).
(1)OB=4,AB=8,∠ABO=90°,
∴A點(diǎn)坐標(biāo)為(4,8),
設(shè)直線AO的解析式為y=kx,則4k=8 ,
解得k=2,即直線AO的解析式為y=2x;
(2)OB=4,∠ABO=90°,=4,
∴DB=2,∴D點(diǎn)的坐標(biāo)為(4,2),
把D(4,2)代入得:=6,
∴直線CD的解析式為;
(3)由直線與直線組成方程組為,
解得:,
∴點(diǎn)C的坐標(biāo)為(2,4)
如圖,設(shè)點(diǎn)M使得MC+MA最小,作點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)E,可得點(diǎn)E的坐標(biāo)為(2,-4),連結(jié)MC、ME、AE,可知MC=ME,所以M到A、C的距離之和MA+MC=MA+ME,又MA+ME大于等于AE,所以當(dāng)MA+ME=AE時(shí),M到A、C的距離之和最小,此時(shí)A、M、E成一條直線,M點(diǎn)是直線AE與在x軸的交點(diǎn).
所以設(shè)直線AE的解析式為,把A(4,8)和E(2,-4)代入得:
,
解得: ,
所以直線AE的解析式為,令得,
所以點(diǎn)M的坐標(biāo)為(,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在三角形ABC中,D是BC上一點(diǎn),且∠CDA=∠CAB.(注:三角形內(nèi)角和等于180°)
(1)求證:∠CDA=∠DAB+∠DBA;
(2)如圖2,MN是經(jīng)過點(diǎn)D的一條直線,若直線MN交AC邊于點(diǎn)E,且∠CDE=∠CAD.求證:∠AED+∠EAB=180°;
(3)將圖2中的直線MN繞點(diǎn)D旋轉(zhuǎn),使它與射線AB交于點(diǎn)P(點(diǎn)P不與點(diǎn)A,B重合).在圖3中畫出直線MN,并用等式表示∠CAD,∠BDP,∠BPD這三個(gè)角之間的數(shù)量關(guān)系,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點(diǎn)之間的距離表示為AB,在數(shù)軸上A、B兩點(diǎn)之間的距離AB=|a﹣b|.回答下列問題:
(1)數(shù)軸上表示﹣3和1兩點(diǎn)之間的距離是 ,數(shù)軸上表示﹣2和3的兩點(diǎn)之間的距離是 ;
(2)數(shù)軸上表示x和﹣1的兩點(diǎn)之間的距離表示為 ;
(3)若x表示一個(gè)有理數(shù),則|x﹣2|+|x+3|有最小值嗎?若有,請求出最小值;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組為了了解本校男生參加課外體育鍛煉情況,隨機(jī)抽取本校300名男生進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)整理并繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖.
請根據(jù)以上信息解答下列問題:
課外體育鍛煉情況扇形統(tǒng)計(jì)圖中,“經(jīng)常參加”所對(duì)應(yīng)的圓心角的度數(shù)為______;
請補(bǔ)全條形統(tǒng)計(jì)圖;
該校共有1200名男生,請估計(jì)全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項(xiàng)目是籃球的人數(shù);
小明認(rèn)為“全校所有男生中,課外最喜歡參加的運(yùn)動(dòng)項(xiàng)目是乒乓球的人數(shù)約為”,請你判斷這種說法是否正確,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)、、拋物線過A、C兩點(diǎn).
直接寫出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;
動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿線段AB向終點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD向終點(diǎn)D運(yùn)動(dòng)速度均為每秒1個(gè)單位長度,運(yùn)動(dòng)時(shí)間為t秒過點(diǎn)P作交AC于點(diǎn)E.
過點(diǎn)E作于點(diǎn)F,交拋物線于點(diǎn)當(dāng)t為何值時(shí),線段EG最長?
連接在點(diǎn)P、Q運(yùn)動(dòng)的過程中,判斷有幾個(gè)時(shí)刻使得是等腰三角形?請直接寫出相應(yīng)的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為邊長為6的正方形ABCD的邊BC上一動(dòng)點(diǎn)(P與B、C不重合),Q在CD上,且CQ=BP,連接AP、BQ,將△BQC沿BQ所在的直線翻折得到△BQE,延長QE交BA的延長線于點(diǎn)F.
(1)試探究AP與BQ的數(shù)量與位置關(guān)系,并證明你的結(jié)論;
(2)當(dāng)E是FQ的中點(diǎn)時(shí),求BP的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑OD⊥AB,與AC交于點(diǎn)E,與過點(diǎn)C的⊙O切線交于點(diǎn)D.
(1)若AC=6,BC=3,求OE的長.
(2)試判斷∠A與∠CDE的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AB=3,BC=4,點(diǎn)E是BC邊上一點(diǎn),連接AE,把∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處,當(dāng)△CEB′為直角三角形時(shí),BE的長為( )
A. 3 B. C. 2或3 D. 3或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】躍壯五金商店準(zhǔn)備從寧云機(jī)械廠購進(jìn)甲、乙兩種零件進(jìn)行銷售.若每個(gè)甲種零件的進(jìn)價(jià)比每個(gè)乙種零件的進(jìn)價(jià)少2元,且用80元購進(jìn)甲種零件的數(shù)量與用100元購進(jìn)乙種零件的數(shù)量相同.
(1)求每個(gè)甲種零件、每個(gè)乙種零件的進(jìn)價(jià)分別為多少元?
(2)若該五金商店本次購進(jìn)甲種零件的數(shù)量比購進(jìn)乙種零件的數(shù)量的3倍還少5個(gè),購進(jìn)兩種零件的總數(shù)量不超過95個(gè),該五金商店每個(gè)甲種零件的銷售價(jià)格為12元,每個(gè)乙種零件的銷售價(jià)格為15元,則將本次購進(jìn)的甲、乙兩種零件全部售出后,可使銷售兩種零件的總利潤(利潤=售價(jià)-進(jìn)價(jià))超過371元,通過計(jì)算求出躍壯五金商店本次從寧云機(jī)械廠購進(jìn)甲、乙兩種零件有幾種方案?請你設(shè)計(jì)出來.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com