【題目】如圖,已知反比例函數(shù)y=與一次函數(shù)y=x+b的圖象交于A(1,-k+4),B(k-4,-1)兩點(diǎn).

(1)試確定這兩個(gè)函數(shù)的表達(dá)式;

(2)根據(jù)圖象寫出使反比例函數(shù)的值大于一次函數(shù)的值的x的取值范圍.

【答案】(1) y=, y=x+1;(2) x<-20<x<1.

【解析】

(1)把點(diǎn)A(1,-k+4)代入y=中,求得k值,即可得反比例函數(shù)的解析式和點(diǎn)A、B的坐標(biāo);把點(diǎn)A的坐標(biāo)代入y=x+b求得b值,即可得一次函數(shù)的解析式;(2)觀察圖象,結(jié)合反比例函數(shù)與一次函數(shù)的交點(diǎn)坐標(biāo),直接寫出答案即可.

(1)∵反比例函數(shù)y=經(jīng)過點(diǎn)A(1,-k+4),

-k+4=,-k+4=k,

k=2,A(1,2),B(-2,-1).

∵一次函數(shù)y=x+b的圖象經(jīng)過點(diǎn)A(1,2),

2=1+b,b=1,

∴反比例函數(shù)的表達(dá)式為y=,一次函數(shù)的表達(dá)式為y=x+1.

(2)由圖象可知,當(dāng)反比例函數(shù)的值大于一次函數(shù)的值時(shí),x的取值范圍是x<-20<x<1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)B6,0)的直線AB與直線OA相交于點(diǎn)A42),動(dòng)點(diǎn)N沿路線O→A→C運(yùn)動(dòng).

1)求直線AB的解析式.

2)求OAC的面積.

3)當(dāng)ONC的面積是OAC面積的時(shí),求出這時(shí)點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,點(diǎn)DE、F分別在BCAB、AC邊上,且BE=CFAD+EC=AB

1)求證:DEF是等腰三角形;

2)當(dāng)∠A=40°時(shí),求∠DEF的度數(shù);

3DEF可能是等腰直角三角形嗎?為什么?

4)請你猜想:當(dāng)∠A為多少度時(shí),∠EDF+EFD=120°,并請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a0)與x軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,直線y=kx+n(k0)經(jīng)過B,C兩點(diǎn),已知A(1,0),C(0,3),且BC=5.

(1)分別求直線BC和拋物線的解析式(關(guān)系式);

(2)在拋物線的對稱軸上是否存在點(diǎn)P,使得以B,C,P三點(diǎn)為頂點(diǎn)的三角形是直角三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P為等邊ABC內(nèi)一點(diǎn),∠APB=112°,如果把ABP繞點(diǎn)A旋轉(zhuǎn),使點(diǎn)B與點(diǎn)C重合,此時(shí)點(diǎn)P落在點(diǎn)P'處,那么∠P P'C=____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某加工企業(yè)生產(chǎn)并銷售某種農(nóng)產(chǎn)品,假設(shè)銷售量與加工產(chǎn)量相等.已知每千克生產(chǎn)成本y1(單位:)與產(chǎn)量x(單位:kg)之間滿足表達(dá)式y1=下圖中線段AB表示每千克銷售價(jià)格y2(單位:)與產(chǎn)量x(單位:kg)之間的函數(shù)表達(dá)式.

(1)試確定每千克銷售價(jià)格y2與產(chǎn)量x之間的函數(shù)表達(dá)式,并寫出自變量的取值范圍;

(2)若用w(單位:)表示銷售該農(nóng)產(chǎn)品的利潤,試確定w與產(chǎn)量x之間的函數(shù)表達(dá)式;

(3)求銷售量為70 kg時(shí),銷售該農(nóng)產(chǎn)品是賺錢,還是虧本?賺錢或虧本了多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,ABC為等邊三角形,AECDAD、BE相交于點(diǎn)P,BQADQPQ3,PE1

1)求證:ABE≌△CAD

2)求∠BPQ的度數(shù);

3)求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖直線y=-2x+4x軸和y軸于點(diǎn)A和點(diǎn)B,點(diǎn)C(0,-2)在y軸上,連接AC。

(1)求點(diǎn)A和點(diǎn)B的坐標(biāo)

(2)若點(diǎn)P是直線AB上一點(diǎn),若△APC的面積為4,求點(diǎn)P;

(3)過點(diǎn)B的直線BHx軸于點(diǎn)H(H點(diǎn)在點(diǎn)A右側(cè)),當(dāng)∠ABE=45時(shí),求直線BE。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,分別以A、C為圓心,大于AC長為半徑畫弧,兩弧相交于點(diǎn)MN,作直線MN,與AC交于點(diǎn)D,與BC交于點(diǎn)E,連接AE.

1∠ADE= °

2AE CE(填“>、<、=”

3)當(dāng)AB=3、AC=5時(shí),△ABE的周長是 .

查看答案和解析>>

同步練習(xí)冊答案