【題目】如圖,拋物線yax2+bx+c經(jīng)過點B(4,0)C(0,﹣2),對稱軸為直線x1,與x軸的另一個交點為點A

1)求拋物線的解析式;

2)點M從點A出發(fā),沿AC向點C運動,速度為1個單位長度/秒,同時點N從點B出發(fā),沿BA向點A運動,速度為2個單位長度/秒,當點M、N有一點到達終點時,運動停止,連接MN,設運動時間為t秒,當t為何值時,AMN的面積S最大,并求出S的最大值;

3)點Px軸上,點Q在拋物線上,是否存在點P、Q,使得以點P、QB、C為頂點的四邊形是平行四邊形,若存在,直接寫出所有符合條件的點P坐標,若不存在,請說明理由.

【答案】1;(2)當時,S最大值為;(3)存在,P1(3+,0),P2(3,0),P3(60),P4(2,0)

【解析】

1)利用待定系數(shù)法確定函數(shù)解析式;

2)由拋物線的對稱性質(zhì)求得A-20),則AB=6;當點N運動t秒時,BN=2t,則AN=6-2t,過點MMDx軸于點D,構(gòu)造直角三角形,由三角形的面積公式列出函數(shù)關(guān)系式,利用配方法求得最大值;

3)需要分三種情況討論,用平移的知識先求出點Q的橫坐標,然后推出點P的坐標.

1)依題意,將B4,0),C0,﹣2),對稱軸為直線x1,代入拋物線解析式,

,

解得:

∴拋物線的解析式為:;

2)∵對稱軸為直線x1B4,0).

A(﹣2,0),則AB6,

當點N運動t秒時,BN2t,則AN62t

如圖1,過點MMDx軸于點D

OAOC2

∴△OAC是等腰直角三角形,

∴∠OAC45°

又∵DMOA

∴△DAM是等腰直角三角形,ADDM

當點M運動t秒時,AMt,

MD2+AD2AM2t2,

DM,

,

∴由二次函數(shù)的圖象及性質(zhì)可知,當時,S最大值為;

3)存在,理由如下:

①當四邊形CBQP為平行四邊形時,CBPQ平行且相等,

B4,0),C0,﹣2),

yByCyQyP2xBxCxQxP4,

yP0

yQ2,

y2代入,

x1,x2,

∴當xQ時,xP;當xQ時,xP,

P1,0),P2,0);

②當四邊形CQPB為平行四邊形時,BPCQ平行且相等,

yPyB0

yQyC=﹣2,

y=﹣2代入

x10(舍去),x22,

xQ2時,

xPxBxQxC2

xP6,

P36,0);

③當四邊形CQBP為平行四邊形時,BPCQ平行且相等,

由②知,xQ2,

xBxPxQxC2,

xP2,

P42,0);

綜上所述,存在滿足條件的點P4個,分別是P1(﹣3+,0),P2(﹣30),P36,0),P42,0).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,矩形的頂點1,0),0,2),點在第一象限,軸,若函數(shù)的圖象經(jīng)過矩形的對角線的交點,則的值為(

A.4B.5C.8D.10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在學習軸對稱現(xiàn)象內(nèi)容時,老師讓同學們尋找身邊的軸對稱圖形,小明利用手中的一副三角尺和一個量角器(如圖所示)進行探究.

1)小明在這三件文具中任取一件,結(jié)果是軸對稱圖形的概率是_________;(取三件中任意一件的可能性相同)

2)小明發(fā)現(xiàn)在、兩把三角尺中各選一個角拼在一起(無重疊無縫隙)會得到一個更大的角,若每個角選取的可能性相同,請用畫樹狀圖或列表的方法說明拼成的角是鈍角的概率是多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為調(diào)查廣西北部灣四市市民上班時最常用的交通工具的情況,隨機抽取了四市部分市民進行調(diào)查,要求被調(diào)查者從“A:自行車,B:電動車,C:公交車,D:家庭汽車,E:其他”五個選項中選擇最常用的一項,將所有調(diào)查結(jié)果整理后繪制成如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請結(jié)合統(tǒng)計圖回答下列問題:

(1)在這次調(diào)查中,一共調(diào)查了 名市民,扇形統(tǒng)計圖中,C組對應的扇形圓心角是 °;

(2)請補全條形統(tǒng)計圖;

(3)若甲、乙兩人上班時從A、B、C、D四種交通工具中隨機選擇一種,則甲、乙兩人恰好選擇同一種交通工具上班的概率是多少?請用畫樹狀圖或列表法求解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段AB4,MAB的中點,動點P到點M的距離是1,連接PB,線段PB繞點P逆時針旋轉(zhuǎn)90°得到線段PC,連接AC,則線段AC長度的最大值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰RtABC中,ACBC6,∠EDF的頂點DAB的中點,且∠EDF45°,現(xiàn)將∠EDF繞點D旋轉(zhuǎn)一周,在旋轉(zhuǎn)過程中,當∠EDF的兩邊DEDF分別交直線AC于點G、H,把△DGH沿DH折疊,點G落在點M處,連接AM,若,則AH的長為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對角線AC、BD相交于點FAC是⊙O的直徑,延長CB到點E,連接AE,∠BAE=∠ADB,ANBD,CMBD,垂足分別為點N、M

1)證明:AE是⊙O的切線;

2)試探究DMBN的數(shù)量關(guān)系并證明;

3)若BDBC,MN2DM,當AE時,求OF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】星期天800~830,燃氣公司給平安加氣站的儲氣罐注入天然氣,注完氣后,一位工作人員以每車20的加氣量,依次給在加氣站排隊等候的若干輛車加氣儲氣罐中的儲氣量(米)與時間(小時)的函數(shù)關(guān)系式如圖所示:

1800~830,燃氣公司向儲氣罐注入了______的天然氣;

2)當時,求儲氣罐中的儲氣量(米)與時間(小時)的函數(shù)關(guān)系式;

3)正在排隊等候的第20輛車加完后儲氣罐內(nèi)還有天然氣______,這20輛車在當天900之前能加完氣嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明星期天上午800從家出發(fā)到離家36千米的書城買書,他先從家出發(fā)騎公共自行車到公交車站,等了12分鐘的車,然后乘公交車于948分到達書城(假設在整個過程中小明騎車的速度不變,公交車勻速行駛,小明家、公交車站、書城依次在一條筆直的公路旁).如圖是小明從家出發(fā)離公交車站的路程y(千米)與他從家出發(fā)的時間x(時)之間的函數(shù)圖象,其中線段AB對應的函教表達式為ykx+6

1)求小明騎公共自行車的速度;

2)求線段CD對應的函數(shù)表達式;

3)求出發(fā)時間x在什么范圍時,小明離公交車站的路程不超過3千米?

查看答案和解析>>

同步練習冊答案