【題目】在網(wǎng)絡(luò)閱讀成為主流的同時,進(jìn)實(shí)體書店看書買書也成為一種新的時尚,重慶楊家坪某書店打算購進(jìn)一批網(wǎng)絡(luò)暢銷書籍進(jìn)行銷售.該書店用12000元購進(jìn)甲種書籍,用14400元購進(jìn)乙種書籍,且購進(jìn)甲乙兩種書籍?dāng)?shù)量相同,甲的進(jìn)價每本比乙少2元.
(1)求甲乙兩種書籍進(jìn)價分別每本多少元?
(2)隨著抖音等網(wǎng)絡(luò)視頻軟件的推廣,這個書店很快成為網(wǎng)紅書店,人流量越來越大.甲種書籍按每15元很快銷售一空,書店決定再次購進(jìn)甲種書籍進(jìn)行銷售.由于紙張成本增加,甲種書籍第二次比第一次進(jìn)價每本增加20%,第二次購進(jìn)甲種書籍總量在第一次購進(jìn)甲種書籍總量的基礎(chǔ)上増加了a%(a>0),為了讓利于讀者,第二次銷售單價在第一次的基礎(chǔ)上減少了%,結(jié)果第二次全部售完甲種書籍的利潤達(dá)到3600元.求a的值.
【答案】(1)甲種書籍的進(jìn)價為10元,乙種書籍的進(jìn)價為12元;(2)a=50.
【解析】
(1)設(shè)甲種書籍的進(jìn)價為x元,乙種書籍的進(jìn)價為(x+2)元,根據(jù)購進(jìn)甲乙兩種書籍?dāng)?shù)量相同列出方程并解答;
(2)根據(jù)第二次全部售完甲種書籍的利潤達(dá)到3600元列出方程,求解即可.
解:(1)設(shè)甲種書籍的進(jìn)價為x元,乙種書籍的進(jìn)價為(x+2)元,
根據(jù)題意得,,
解得:x=10,
經(jīng)檢驗(yàn):x=10是原方程的根,
∴x+2=12,
答:甲種書籍的進(jìn)價為10元,乙種書籍的進(jìn)價為12元;
(2)根據(jù)題意得,,
解得:a=0或a=50,
∵a>0,
∴a=50.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程mx2﹣(3m﹣1)x+2m﹣2=0
(1)求證:無論m取任何實(shí)數(shù)時,方程恒有實(shí)數(shù)根;
(2)若關(guān)于x的二次函數(shù)y=mx2﹣(3m﹣1)x+2m﹣2的圖象與x軸兩交點(diǎn)間的距離為2,且拋物線的開口向上時,求此拋物線的解析式;
(3)在坐標(biāo)系中畫出(2)中的函數(shù)圖象,分析當(dāng)直線y=x+b與(2)中的圖象只有兩個交點(diǎn)時b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A為平面直角坐標(biāo)系第一象限內(nèi)一點(diǎn),直線y=x過點(diǎn)A,過點(diǎn)A作AD⊥y軸于點(diǎn)D,點(diǎn)B是y軸正半軸上一動點(diǎn),連接AB,過點(diǎn)A作AC⊥AB交x軸于點(diǎn)C.
(1)如圖,當(dāng)點(diǎn)B在線段OD上時,求證:AB=AC;
(2)①如圖,當(dāng)點(diǎn)B在OD延長線上,且點(diǎn)C在x軸正半軸上, OA、OB、OC之間的數(shù)量關(guān)系為________(不用說明理由);
②當(dāng)點(diǎn)B在OD延長線上,且點(diǎn)C在x軸負(fù)半軸上,寫出OA、OB、OC之間的數(shù)量關(guān)系,并說明原因.
(3)直線BC分別與直線AD、直線y=x交于點(diǎn)E、F,若BE=5,CF=12,直接寫出AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把2張形狀大小完全相同的小長方形卡片(如圖①)不重疊地放在一個底面為長方形(長為m,寬為n)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示.陰影部分剛好能分割成兩張形狀大小不同的小長方形卡片(如圖③),則分割后的兩個陰影長方形的周長和是( 。
A. 4mB. 2(m+n)C. 4nD. 4(m﹣n)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD 內(nèi)接于⊙O,BD是⊙O的直徑,過點(diǎn)A作⊙O的切線AE交CD的延長線于點(diǎn)E,DA平分∠BDE.
(1)求證:AE⊥CD;
(2)已知AE=4cm,CD=6cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣教育局為了豐富初中學(xué)生的大課間活動,要求各學(xué)校開展形式多樣的陽光體育活動.某中學(xué)就“學(xué)生體育活動興趣愛好”的問題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:
(1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有 人,在扇形統(tǒng)計(jì)圖中,“乒乓球”的百分比為 %,如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有 人喜歡籃球項(xiàng)目.
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級參加;@球隊(duì),請直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD與四邊形CEFG是兩個正方形,邊長分別為a,b,其中B,C,E在一條直線上,G在線段CD上,三角形AGE的面積為S.
(1)①當(dāng)a=5,b=3時,求S的值;
②當(dāng)a=7,b=3時,求S的值;
(2)從以上結(jié)果中,請你猜想S與a,b中的哪個量有關(guān)?用字母a,b表示S,并對你的猜想進(jìn)行證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O 為坐標(biāo)原點(diǎn),P是反比例函數(shù)圖象上任意一點(diǎn),以P為圓心,PO為半徑的圓與x軸交于點(diǎn) A、與y軸交于點(diǎn)B,連接AB.
(1)求證:P為線段AB的中點(diǎn);
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若代數(shù)式(4x2-mx-3y+4)-(8nx2-x+2y-3)的值與字母x的取值無關(guān),求代數(shù)式(-m2+2mn-n2)-2(mn-3m2)+3(2n2-mn)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com