【題目】已知關(guān)于x的方程mx2﹣(3m﹣1)x+2m﹣2=0
(1)求證:無(wú)論m取任何實(shí)數(shù)時(shí),方程恒有實(shí)數(shù)根;
(2)若關(guān)于x的二次函數(shù)y=mx2﹣(3m﹣1)x+2m﹣2的圖象與x軸兩交點(diǎn)間的距離為2,且拋物線(xiàn)的開(kāi)口向上時(shí),求此拋物線(xiàn)的解析式;
(3)在坐標(biāo)系中畫(huà)出(2)中的函數(shù)圖象,分析當(dāng)直線(xiàn)y=x+b與(2)中的圖象只有兩個(gè)交點(diǎn)時(shí)b的取值范圍.
【答案】(1)見(jiàn)解析; (2)所求拋物線(xiàn)的解析式為:y=x2﹣2x;(3)當(dāng)b>﹣時(shí),直線(xiàn)y=x+b與(2)中的圖象只有兩個(gè)交點(diǎn).
【解析】試題分析:(1)二次項(xiàng)系數(shù)m的值不確定,分為m=0,m≠0兩種情況,分別證明方程有實(shí)數(shù)根;
(2)設(shè)拋物線(xiàn)與x軸兩交點(diǎn)的橫坐標(biāo)為x1,x2,則兩交點(diǎn)之間距離為|x1-x2|=2,再與根與系數(shù)關(guān)系的等式結(jié)合變形,可求m的值,從而確定拋物線(xiàn)的解析式;
(3)聯(lián)立方程組,有解時(shí),求出b的取值范圍.
試題解析:
(1)分兩種情況討論.
①當(dāng)m=0時(shí),方程為x﹣2=0,x=2.
∴m=0時(shí),方程有實(shí)數(shù)根.
②當(dāng)m≠0時(shí),則一元二次方程的根的判別式
△=[﹣(3m﹣1)]2﹣4m(2m﹣2)
=9m2﹣6m+1﹣8m2+8m=m2+2m+1
=(m+1)2≥0,
∴m≠0時(shí),方程有實(shí)數(shù)根.
故無(wú)論m取任何實(shí)數(shù)時(shí),方程恒有實(shí)數(shù)根.
綜合①②可知,m取任何實(shí)數(shù),方程mx2﹣(3m﹣1)x+2m﹣2=0恒有實(shí)數(shù)根;
(2)設(shè)x1,x2為拋物線(xiàn)y=mx2﹣(3m﹣1)x+2m﹣2與x軸交點(diǎn)的橫坐標(biāo).
則有x1+x2= ,x1x2=
由|x1﹣x2|==||,
由|x1﹣x2|=2得||=2,
∴=2或=﹣2
∴m=1或m=﹣
而拋物線(xiàn)開(kāi)口向上,
∴m=1
∴所求拋物線(xiàn)的解析式為:y=x2﹣2x;
(3)在(2)的條件下,直線(xiàn)y=x+b與拋物線(xiàn)y1,y2組成的圖象只有兩個(gè)交點(diǎn),
聯(lián)立得, ,
∴x2﹣3x﹣b=0,
∴△=9+4b>0,解得b>﹣ ;
當(dāng)b>﹣時(shí),直線(xiàn)y=x+b與(2)中的圖象只有兩個(gè)交點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,A,B,C三點(diǎn)的坐標(biāo)分別為(5,﹣1),(2,﹣5),(2,﹣1).
(1)把△ABC向上平移6個(gè)單位后得到△A1B1C1,畫(huà)出△A1B1C1;
(2)畫(huà)出△A2B2C2,使它與△ABC關(guān)于y軸對(duì)稱(chēng);
(3)畫(huà)出△A3B3C3,使它與△ABC關(guān)于原點(diǎn)中心對(duì)稱(chēng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ABC=∠ACB,點(diǎn)D在BC邊所在的直線(xiàn)上,點(diǎn)E在射線(xiàn)AC上,且始終保持∠ADE=∠AED.
(1)如圖1,若∠B=∠C=30°,∠BAD=70°,求∠CDE的度數(shù);
(2)如圖2,若∠ABC=∠ACB=70°,∠CDE=15°,求∠BAD的度數(shù);
(3)如圖3,當(dāng)點(diǎn)D在BC邊的延長(zhǎng)線(xiàn)上時(shí),猜想∠BAD與∠CDE的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象經(jīng)過(guò)A(2,0),B(0,-6)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的對(duì)稱(chēng)軸與x軸交于點(diǎn)C,連接BA,BC,求△ABC的面積.
(3)在x軸上是否存在一點(diǎn)P,使△ABP為等腰三角形,若存在,求出P的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形, 點(diǎn)G是BC上任意一點(diǎn),DE⊥AG于點(diǎn)E,BF⊥AG于點(diǎn)F.
(1) 求證:DE-BF = EF;
(2) 當(dāng)點(diǎn)G為BC邊中點(diǎn)時(shí), 試探究線(xiàn)段EF與GF之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線(xiàn)x=﹣1,且拋物線(xiàn)經(jīng)過(guò)A(1,0),C(0,3)兩點(diǎn),與x軸交于點(diǎn)B.
(1)若直線(xiàn)y=mx+n經(jīng)過(guò)B、C兩點(diǎn),求直線(xiàn)BC和拋物線(xiàn)的解析式;
(2)在拋物線(xiàn)的對(duì)稱(chēng)軸x=﹣1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)P為拋物線(xiàn)的對(duì)稱(chēng)軸x=﹣1上的一個(gè)動(dòng)點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊿ABC中,∠A=40°,∠ACB=104°,BD為AC邊上的高,BE是⊿ABC的角平分線(xiàn),求∠EBD的度數(shù).
【答案】32°
【解析】試題分析:根據(jù)三角形的內(nèi)角和定理求出∠ABC,再根據(jù)角平分線(xiàn)的定義求出∠ABE,然后利用三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式求出∠BED,再根據(jù)直角三角形兩銳角互余列式進(jìn)行計(jì)算即可得解.
試題解析:由三角形內(nèi)角和定理,得∠B+∠ACB+∠BAC=180°,
又∠A=40°,∠ACB=104°,
∴∠ABC=180°-40°-104°=36°,
又∵BE平分∠ABC,
∴∠ABE=∠ABC=18°
∴∠BED=∠A+∠ABE=40°+18°=58°,
又∵∠BED+∠DBE=90°,
∴∠DBE=90°-∠BED=90°-58°=32°.
【題型】解答題
【結(jié)束】
25
【題目】已知,如圖, AB∥CD,∠1=∠2,那么∠E和∠F相等嗎? 為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)l1:分別與x軸、y軸交于點(diǎn)B、C,且與直線(xiàn)l2:交于點(diǎn)A.
(1)求出點(diǎn)A的坐標(biāo)
(2)若D是線(xiàn)段OA上的點(diǎn),且△COD的面積為12,求直線(xiàn)CD的解析式
(3)在(2)的條件下,設(shè)P是射線(xiàn)CD上的點(diǎn),在平面內(nèi)是否存在點(diǎn)Q,使以O(shè)、C、P、Q為頂點(diǎn)的四邊形是菱形?若存在,直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在網(wǎng)絡(luò)閱讀成為主流的同時(shí),進(jìn)實(shí)體書(shū)店看書(shū)買(mǎi)書(shū)也成為一種新的時(shí)尚,重慶楊家坪某書(shū)店打算購(gòu)進(jìn)一批網(wǎng)絡(luò)暢銷(xiāo)書(shū)籍進(jìn)行銷(xiāo)售.該書(shū)店用12000元購(gòu)進(jìn)甲種書(shū)籍,用14400元購(gòu)進(jìn)乙種書(shū)籍,且購(gòu)進(jìn)甲乙兩種書(shū)籍?dāng)?shù)量相同,甲的進(jìn)價(jià)每本比乙少2元.
(1)求甲乙兩種書(shū)籍進(jìn)價(jià)分別每本多少元?
(2)隨著抖音等網(wǎng)絡(luò)視頻軟件的推廣,這個(gè)書(shū)店很快成為網(wǎng)紅書(shū)店,人流量越來(lái)越大.甲種書(shū)籍按每15元很快銷(xiāo)售一空,書(shū)店決定再次購(gòu)進(jìn)甲種書(shū)籍進(jìn)行銷(xiāo)售.由于紙張成本增加,甲種書(shū)籍第二次比第一次進(jìn)價(jià)每本增加20%,第二次購(gòu)進(jìn)甲種書(shū)籍總量在第一次購(gòu)進(jìn)甲種書(shū)籍總量的基礎(chǔ)上増加了a%(a>0),為了讓利于讀者,第二次銷(xiāo)售單價(jià)在第一次的基礎(chǔ)上減少了%,結(jié)果第二次全部售完甲種書(shū)籍的利潤(rùn)達(dá)到3600元.求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com