【題目】如圖,已知菱形ABCD中,DE⊥AB于點(diǎn)E,DE = 4cm,∠A =45°,求菱形ABCD的面積和梯形DEBC的中位線長(zhǎng)(精確到0.1cm)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為5,點(diǎn)A的坐標(biāo)為(﹣4,0),點(diǎn)B在y軸上,若反比例函數(shù)(k≠0)的圖象過(guò)點(diǎn)C,則該反比例函數(shù)的表達(dá)式為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,其邊長(zhǎng)為2,點(diǎn),點(diǎn)分別在軸, 軸的正半軸上.函數(shù)的圖像與交于點(diǎn),函數(shù)為常數(shù), )的圖像經(jīng)過(guò)點(diǎn),與交于點(diǎn),與函數(shù)的圖像在第三象服內(nèi)交于點(diǎn),連接.
(1)求函數(shù)的表達(dá)式,并直接寫出兩點(diǎn)的坐標(biāo);
(2)求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,甲、乙兩船從港口A同時(shí)出發(fā),甲船以30海里/時(shí)的速度向北偏東35°的方向航行,乙船以40海里/時(shí)的速度向另一方向航行,2小時(shí)后,甲船到達(dá)C島,乙船到達(dá)B島,若C,B兩島相距100海里,則乙船航行的方向是南偏東多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,平行四邊形ABCD的對(duì)角線AC的垂直平分線與邊AD、BC分別相交于點(diǎn)E、F.
求證:四邊形AFCE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用“>”或“<”填空.
(1) 3.4 _____0 (2) 0 ______-22. 8
(3 ) -3______-4 (4) -______-0.3
(5) -0. 66_____- (6) -______-3.14
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們運(yùn)用圖(Ⅰ)中大正方形的面積可表示為(a+b)2,也可表示為c3+4(ab),即(a+b)2=c2+4(ab)由此推導(dǎo)出一個(gè)重要的結(jié)論a2+b2=c2,這個(gè)重要的結(jié)論就是著名的“勾股定理”.這種根據(jù)圖形可以極簡(jiǎn)單地直觀推論或驗(yàn)證數(shù)學(xué)規(guī)律和公式的方法,簡(jiǎn)稱“無(wú)字證明”.
(1)請(qǐng)你用圖(Ⅱ)(2002年國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo))的面積表達(dá)式驗(yàn)證勾股定理(其中四個(gè)直角三角形的較大的直角邊長(zhǎng)都為a,較小的直角邊長(zhǎng)都為b,斜邊長(zhǎng)都為c).
(2)請(qǐng)你用(Ⅲ)提供的圖形進(jìn)行組合,用組合圖形的面積表達(dá)式驗(yàn)證:(x+2y)2=x2+4xy+4y2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.
(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系________;
(2)如圖2,過(guò)點(diǎn)B作BD⊥AM于點(diǎn)D,求證:∠ABD=∠C;
(3)如圖3,在(2)問的條件下,點(diǎn)E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com