【題目】下列說法中,正確的是( )
A.單項式 的系數(shù)是-2,次數(shù)是3B.單項式a的系數(shù)是0,次數(shù)是0
C.是三次三項式,常數(shù)項是1D.單項式的次數(shù)是2,系數(shù)為
【答案】D
【解析】
根據(jù)單項式系數(shù)、次數(shù)的定義來求解.單項式中數(shù)字因數(shù)叫做單項式的系數(shù),所有字母的指數(shù)和叫做這個單項式的次數(shù).
解:A、單項式的系數(shù)是-,次數(shù)是3,系數(shù)包括分母,錯誤;
B、單項式a的系數(shù)是1,次數(shù)是1,當(dāng)系數(shù)和次數(shù)是1時,可以省去不寫,錯誤;
C、-3x2y+4x-1是三次三項式,常數(shù)項是-1,每一項都包括這項前面的符號,錯誤;
D、單項式-的次數(shù)是2,系數(shù)為-,符合單項式系數(shù)、次數(shù)的定義,正確;
故選D.
考查的知識點為:單項式中的數(shù)字因數(shù)叫做這個單項式的系數(shù).單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù);多項式里次數(shù)最高項的次數(shù)叫做這個多項式的次數(shù).單獨的一個字母的系數(shù)和次數(shù)都是1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O(0,0),B(0,1)是正方形OBB1C的兩個頂點,以它的對角線OB1為一邊作正方形OB1B2C1,以正方形OB1B2C1的對角線OB2為一邊作正方形OB2B3C2,再以正方形OB2B3C2的對角線OB3為一邊作正方形OB3B4C3,…,依次進行下去,則點B6的坐標(biāo)是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連結(jié)BD,BE.以下四個結(jié)論:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④∠ACE=∠DBC其中結(jié)論正確的個數(shù)有( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,A(-4,0),B(6,0),C(2,4),D(-3,2).
(1)求四邊形ABCD的面積;
(2)在y軸上找一點P,使△APB的面積等于四邊形的一半,求P點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若將一副三角板按如圖所示的方式放置,則下列結(jié)論正確的是( )
A.∠1=∠2B.如果∠2=30°,則有AC∥DE
C.如果∠2=45°,則有∠4=∠DD.如果∠2=50°,則有BC∥AE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部寫出來,,于是可用來表示的小數(shù)部分.請解答下列問題:
(1)的整數(shù)部分是________,小數(shù)部分是________.
(2)如果的小數(shù)部分為,的整數(shù)部分為,求的值.
(3)已知:,其中是整數(shù),且,求的相反數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,BC=AC,∠BCA=90°,P為直線AC上一點,過點A作AD⊥BP于點D,交直線BC于點Q.
(1)如圖1,當(dāng)P在線段AC上時,求證:BP=AQ;
(2)如圖2,當(dāng)P在線段CA的延長線上時,(1)中的結(jié)論是否成立? (填“成立”或“不成立”)
(3)在(2)的條件下,當(dāng)∠DBA= 度時,存在AQ=2BD,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=x+2的圖象與x軸交于點A,與y軸交于點C,拋物線y=ax2+bx+c關(guān)于直線x=對稱,且經(jīng)過A. C兩點,與x軸交于另一點為B.
(1)求拋物線的解析式;
(2)若點P為直線AC上方的拋物線上的一點,過點P作PQ⊥x軸于M,交AC于Q,求PQ的⊥最大值,并求此時△APC的面積;
(3)在拋物線的對稱軸上找出使△ADC為直角三角形的點D,直接寫出點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀理解:如圖1是二環(huán)三角形,可得S=∠A1+∠A2+…+∠A6=360°
理由:連接A1A4
∵∠1+∠2+∠A1OA4=180°
∠A5+∠A6+∠A5OA6=180°
又∵∠A1OA4=∠A5OA6
∴∠1+∠2=∠A5+∠A6
∴∠A2+∠3+∠1+∠2+∠4+∠A3=360°
∴∠A2+∠3+∠A5+∠A6+∠4+∠A3=360°
即S=360°
(2)延伸探究:
①如圖2是二環(huán)四邊形,可得S=∠A1+∠A2+…+∠A8=720°,請你加以證明
②如圖3是二環(huán)五邊形,可得S= ,聰明的你,能根據(jù)以上的規(guī)律直接寫出二環(huán)n邊形(n≥3的整數(shù))中,S= 度.(用含n的代數(shù)式表示最后的結(jié)果)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com