【題目】某校申報(bào)“跳繩特色運(yùn)動(dòng)”學(xué)校一年后,抽樣調(diào)查了部分學(xué)生的“1分鐘跳繩”成績,并制成了下面的頻數(shù)分布直方圖(每小組含最小值,不含最大值)和扇形圖.

(1)補(bǔ)全頻數(shù)分布直方圖,扇形圖中m= ;
(2)若把每組中各個(gè)數(shù)據(jù)用這組數(shù)據(jù)的中間值代替(如A組80≤x<100的中間值是=90次),則這次調(diào)查的樣本平均數(shù)是多少?
(3)如果“1分鐘跳繩”成績大于或等于120次為優(yōu)秀,那么該校2100名學(xué)生中“1分鐘跳繩”成績?yōu)閮?yōu)秀的大約有多少人?

【答案】
(1)

解:

由直方圖和扇形圖可知,A組人數(shù)是6人,占10%,

則總?cè)藬?shù):6÷10%=60,

m=×360°=84°,

D組人數(shù)為:60﹣6﹣14﹣19﹣5=16;


(2)

解:平均數(shù)是:=130;


(3)

解:績?yōu)閮?yōu)秀的大約有:2100×=1400人


【解析】(1)首先由第二小組有10人,占20%,可求得總?cè)藬?shù),再根據(jù)各小組頻數(shù)之和等于數(shù)據(jù)總數(shù)求得第四小組的人數(shù),作出統(tǒng)計(jì)圖,先求出第一小組所占百分比,再乘以360°即可求出對(duì)應(yīng)扇形圓心角的度數(shù);
(2)根據(jù)加權(quán)平均數(shù)的計(jì)算公式求出平均數(shù)即可;
(3)求出樣本中成績優(yōu)秀的人數(shù)所占的百分比,用樣本估計(jì)總體即可.
此題考查了統(tǒng)計(jì)圖的應(yīng)用,涉及知識(shí)點(diǎn)有利用樣本估計(jì)總體,扇形圓心角度數(shù)求法以及平均數(shù)求法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=x﹣2與反比例函數(shù)y= 的圖象交于A、B兩點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)觀察圖象,直接寫出一次函數(shù)值小于反比例函數(shù)值的x的取值范圍;
(3)坐標(biāo)原點(diǎn)為O,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,∠ACB=30°.將△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)15°后得到△AB1C1 , B1C1交AC于點(diǎn)D,如果AD=2 ,則△ABC的周長等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系XOY中,直線l1過點(diǎn)A(1,0)且與y軸平行,直線l2過點(diǎn)B(0,2)且與x軸平行,直線l1與直線l2相交于點(diǎn)P.點(diǎn)E為直線l2上一點(diǎn),反比例函數(shù) (k>0)的圖象過點(diǎn)E與直線l1相交于點(diǎn)F.
(1)若點(diǎn)E與點(diǎn)P重合,求k的值;
(2)連接OE、OF、EF.若k>2,且△OEF的面積為△PEF的面積的2倍,求E點(diǎn)的坐標(biāo);
(3)是否存在點(diǎn)E及y軸上的點(diǎn)M,使得以點(diǎn)M、E、F為頂點(diǎn)的三角形與△PEF全等?若存在,求E點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知經(jīng)過點(diǎn)D(2,﹣)的拋物線y=(x+1)(x﹣3)(m為常數(shù),且m>0)與x軸交于點(diǎn)A、B(點(diǎn)A位于B的左側(cè)),與y軸交于點(diǎn)C.
(1)填空:m的值為   , 點(diǎn)A的坐標(biāo)為;
(2)根據(jù)下列描述,用尺規(guī)完成作圖(保留作圖痕跡,不寫作法):連接AD,在x軸上方作射線AE,使∠BAE=∠BAD,過點(diǎn)D作x軸的垂線交射線AE于點(diǎn)E;
(3)動(dòng)點(diǎn)M、N分別在射線AB、AE上,求ME+MN的最小值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,點(diǎn)P是斜邊AB的中點(diǎn),點(diǎn)M從點(diǎn)C向點(diǎn)A勻速運(yùn)動(dòng),點(diǎn)N從點(diǎn)B向點(diǎn)C勻速運(yùn)動(dòng),已知兩點(diǎn)同時(shí)出發(fā),同時(shí)到達(dá)終點(diǎn),連接PM、PN、MN,在整個(gè)運(yùn)動(dòng)過程中,△PMN的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系圖象大致是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小賢為了體驗(yàn)四邊形的不穩(wěn)定性,將四根木條用釘子釘成一個(gè)矩形框架ABCD,B與D兩點(diǎn)之間用一根橡皮筋拉直固定,然后向右扭動(dòng)框架,觀察所得四邊形的變化,下列判斷錯(cuò)誤的是(  )

A.四邊形ABCD由矩形變?yōu)槠叫兴倪呅?/span>
B.BD的長度增大
C.四邊形ABCD的面積不變
D.四邊形ABCD的周長不變

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△DBC是兩個(gè)具有公共邊的全等三角形,AB=AC=3cm.BC=2cm,將△DBC沿射線BC平移一定的距離得到△D1B1C1 , 連接AC1 , BD1 . 如果四邊形ABD1C1是矩形,那么平移的距離為 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形 OABC中,OA=3,OC=5,分別以 OA、OC所在直線為x 軸、y 軸,建立平面直角坐標(biāo)系,D是邊CB上的一個(gè)動(dòng)點(diǎn)(不與C、B重合),反比例函數(shù)y=(k>0)的圖象經(jīng)過點(diǎn)D且與邊BA交于點(diǎn)E,連接DE.

(1)連接OE,若△EOA的面積為2,則k=
(2)連接CA,DE與CA是否平行?請說明理由:
(3)是否存在點(diǎn)D,使得點(diǎn)B關(guān)于DE的對(duì)稱點(diǎn)在OC上?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請說明理由:

查看答案和解析>>

同步練習(xí)冊答案