【題目】某商店準(zhǔn)備購(gòu)進(jìn)兩種商品,種商品毎件的進(jìn)價(jià)比種商品每件的進(jìn)價(jià)多20元,用3000元購(gòu)進(jìn)種商品和用1800元購(gòu)進(jìn)種商品的數(shù)量相同.商店將種商品每件的售價(jià)定為80元,種商品每件的售價(jià)定為45元.

1種商品每件的進(jìn)價(jià)和種商品每件的進(jìn)價(jià)各是多少元?

2)商店計(jì)劃用不超過(guò)1560元的資金購(gòu)進(jìn)兩種商品共40件,其中種商品的數(shù)量不低于種商品數(shù)量的一半,該商店有幾種進(jìn)貨方案?

3)端午節(jié)期間,商店開(kāi)展優(yōu)惠促銷(xiāo)活動(dòng),決定對(duì)每件種商品售價(jià)優(yōu)惠)元,種商品售價(jià)不變,在(2)條件下,請(qǐng)?jiān)O(shè)計(jì)出銷(xiāo)售這40件商品獲得總利潤(rùn)最大的進(jìn)貨方案.

【答案】1種商品每件的進(jìn)價(jià)是50元,種商品每件的進(jìn)價(jià)是30元;(2)商店共有5種進(jìn)貨方案;3)①當(dāng)時(shí),獲利最大,即買(mǎi)18商品,22商品,②當(dāng)時(shí),,(2)問(wèn)中所有進(jìn)貨方案獲利相同,③當(dāng)時(shí),獲利最大,即買(mǎi)14商品,26商品.

【解析】

1)設(shè)A商品每件進(jìn)價(jià)為x元,B商品每件的進(jìn)價(jià)為(x-20)元,根據(jù)種商品毎件的進(jìn)價(jià)比種商品每件的進(jìn)價(jià)多20元,用3000元購(gòu)進(jìn)種商品和用1800元購(gòu)進(jìn)種商品的數(shù)量相同,列方程求解;

2)設(shè)購(gòu)買(mǎi)種商品件,則購(gòu)買(mǎi)商品()件,根據(jù)商店計(jì)劃用不超過(guò)1560元的資金購(gòu)進(jìn)兩種商品共40件,其中種商品的數(shù)量不低于種商品數(shù)量的一半,列出不等式組即可

3)先設(shè)銷(xiāo)售兩種商品共獲利元,然后分析求解新的進(jìn)貨方案

1)設(shè)種商品每件的進(jìn)價(jià)是元,則種商品每件的進(jìn)價(jià)是元,

由題意得:,

解得:,

經(jīng)檢驗(yàn),是原方程的解,且符合題意,

,

答:種商品每件的進(jìn)價(jià)是50元,種商品每件的進(jìn)價(jià)是30元;

2)設(shè)購(gòu)買(mǎi)種商品件,則購(gòu)買(mǎi)商品()件,

由題意得:,

解得:

為正整數(shù),

14、15、16、17、18

∴商店共有5種進(jìn)貨方案;

3)設(shè)銷(xiāo)售兩種商品共獲利元,

由題意得:

,

①當(dāng)時(shí),,的增大而增大,

∴當(dāng)時(shí),獲利最大,即買(mǎi)18商品,22商品,

②當(dāng)時(shí),,

的值無(wú)關(guān),即(2)問(wèn)中所有進(jìn)貨方案獲利相同,

③當(dāng)時(shí),的增大而減小,

∴當(dāng)時(shí),獲利最大,即買(mǎi)14商品,26商品.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知點(diǎn)A-2,0).點(diǎn)Dy軸上,連接AD并將它沿x軸向右平移至BC的位置,且點(diǎn)B坐標(biāo)為(4,0),連接CD,OD=AB

1)線(xiàn)段CD的長(zhǎng)為 ,點(diǎn)C的坐標(biāo)為 ;

2)如圖2,若點(diǎn)M從點(diǎn)B出發(fā),以1個(gè)單位長(zhǎng)度/秒的速度沿著x軸向左運(yùn)動(dòng),同時(shí)點(diǎn)N從原點(diǎn)O出發(fā),以相同的速度沿折線(xiàn)OD→DC運(yùn)動(dòng)(當(dāng)N到達(dá)點(diǎn)C時(shí),兩點(diǎn)均停止運(yùn)動(dòng)).假設(shè)運(yùn)動(dòng)時(shí)間為t秒.

t為何值時(shí),MNy軸;

②求t為何值時(shí),SBCM=2SADN

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為2,其面積標(biāo)記為S1,以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標(biāo)記為S2按照此規(guī)律繼續(xù)下去,則S2016的值為( 。

A. 2013B. 2014C. 2013D. 2014

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)解不等式24x-1≥5x-8,并把它的解集在數(shù)軸上表示出來(lái).

2)如圖,在平面直角坐標(biāo)系xOy中,ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A-3,0),B-6,-2C-2,-5).將ABC向上平移3個(gè)單位長(zhǎng)度,再向右平移5個(gè)單位長(zhǎng)度,得到A1B1C1

①在平面直角坐標(biāo)系xOy中畫(huà)出A1B1C1

②求A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)y1=的圖象與一次函數(shù)y2=ax+b的圖象交于點(diǎn)A(1,4)和點(diǎn)B(m,-2) .

(1)求這兩個(gè)函數(shù)的關(guān)系式;

(2)觀察圖象,直接寫(xiě)出使得y1>y2成立的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC,∠1∠2,GAD的中點(diǎn)BG的延長(zhǎng)線(xiàn)交AC于點(diǎn)E,FAB上的一點(diǎn),CFAD垂直,AD于點(diǎn)H,則下面判斷正確的有( 。

AD是△ABE的角平分線(xiàn);BE是△ABD的邊AD上的中線(xiàn);

CH是△ACD的邊AD上的高AH是△ACF的角平分線(xiàn)和高

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,分別以RtABC的直角邊AC,斜邊AB為邊向外作等邊三角形△ACD和△ABE,FAB的中點(diǎn),連接DF,EF,∠ACB90°,∠ABC30°.則以下4個(gè)結(jié)論:①ACDF;②四邊形BCDF為平行四邊形;③DA+DFBE;④其中,正確的 是(  )

A.只有①②B.只有①②③C.只有③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)軸相交于O、A兩點(diǎn)(其中O為坐標(biāo)原點(diǎn)),過(guò)點(diǎn)P2,2a)作直線(xiàn)PMx軸于點(diǎn)M,交拋物線(xiàn)于點(diǎn)B,點(diǎn)B關(guān)于拋物線(xiàn)對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)為C(其中BC不重合),連接APy軸于點(diǎn)N,連接BCPC

1時(shí),求拋物線(xiàn)的解析式和BC的長(zhǎng);

2)如圖時(shí),若APPC,求的值;

3)是否存在實(shí)數(shù),使,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】七年級(jí)教師對(duì)試卷講評(píng)課中學(xué)生參與的深度與廣度進(jìn)行評(píng)價(jià)調(diào)查,其評(píng)價(jià)項(xiàng)目為主動(dòng)質(zhì)疑、獨(dú)立思考、專(zhuān)注聽(tīng)講、講解題目四項(xiàng):評(píng)價(jià)組隨機(jī)抽取了若干名初中學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)圖中所給信息解答下列問(wèn)題:

1)在這次評(píng)價(jià)中,一共抽查了________名學(xué)生;

2)在扇形統(tǒng)計(jì)圖中,項(xiàng)目“主動(dòng)質(zhì)疑”所在的扇形的圓心角的度數(shù)為________度;

3)請(qǐng)將頻數(shù)分布直方圖補(bǔ)充完整;

4)如果全市有8600名七年級(jí)學(xué)生,那么在試卷評(píng)講課中,“獨(dú)立思考”的七年級(jí)學(xué)生約有多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案