【題目】已知反比例函數(shù)y1=的圖象與一次函數(shù)y2=ax+b的圖象交于點(diǎn)A(1,4)和點(diǎn)B(m,-2) .

(1)求這兩個(gè)函數(shù)的關(guān)系式;

(2)觀察圖象,直接寫出使得y1>y2成立的自變量x的取值范圍.

【答案】(1)y1= , y2=2x+2(2)當(dāng)x<20<x<1時(shí),y1>y2

【解析】試題分析:(1)把A的坐標(biāo)代入反比例函數(shù)解析式求出k值即可,進(jìn)而求出B點(diǎn)坐標(biāo),再把A、B的坐標(biāo)代入一次函數(shù)解析式求出即可;

(2)根據(jù)A、B的坐標(biāo)結(jié)合圖象即可得出答案.

試題解析:(1)函數(shù)y1=圖象過點(diǎn)A(1,4),

k=4, y1=

點(diǎn)B(m,2)y1=上,m=2,

B(2,2),

一次函數(shù)y2=ax+bA.B兩點(diǎn),

,解得

y2=2x+2,

綜上可得y1=,y2=2x+2;

(2)∵B(-2,-2),A(1,4),

∴根據(jù)圖象可知:當(dāng)x<2或0<x<1時(shí),一次函數(shù)值小于反比例函數(shù)值,即y1>y2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的口袋里裝有分別標(biāo)有漢字”、“”、“”、“的四個(gè)小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻.

(1)若從中任取一個(gè)球,球上的漢字剛好是的概率為__________.

(2)從中任取一球,不放回,再從中任取一球,請(qǐng)用樹狀圖或列表的方法,求取出的兩個(gè)球上的漢字能組成歷城的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2分)矩形的一內(nèi)角平分線把矩形的一條邊分成35兩部分,則該矩形的周長是()

A. 16 B. 2216 C. 26 D. 2226

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)店店主小李進(jìn)了一批某種商品,每件進(jìn)價(jià)10.預(yù)售一段時(shí)間后發(fā)現(xiàn):每天銷售量(件)與售價(jià)(元/件)之間成一次函數(shù)關(guān)系:.

1)小李想每天賺取利潤150元,又要使所進(jìn)的貨盡快脫手,則售價(jià)定為多少合適?

2)小李想每天賺取利潤300元,這個(gè)想法能實(shí)現(xiàn)嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,然后解答后面的問題:

利用完全平方公式,通過配方可對(duì)進(jìn)行適當(dāng)?shù)淖冃危?/span>,從而使某些問題得到解決,

例:已知,.求的值.

解:=19

問題:已知:,求下列代數(shù)式的值.

1;

2

3)已知,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店準(zhǔn)備購進(jìn)兩種商品,種商品毎件的進(jìn)價(jià)比種商品每件的進(jìn)價(jià)多20元,用3000元購進(jìn)種商品和用1800元購進(jìn)種商品的數(shù)量相同.商店將種商品每件的售價(jià)定為80元,種商品每件的售價(jià)定為45元.

1種商品每件的進(jìn)價(jià)和種商品每件的進(jìn)價(jià)各是多少元?

2)商店計(jì)劃用不超過1560元的資金購進(jìn)兩種商品共40件,其中種商品的數(shù)量不低于種商品數(shù)量的一半,該商店有幾種進(jìn)貨方案?

3)端午節(jié)期間,商店開展優(yōu)惠促銷活動(dòng),決定對(duì)每件種商品售價(jià)優(yōu)惠)元,種商品售價(jià)不變,在(2)條件下,請(qǐng)?jiān)O(shè)計(jì)出銷售這40件商品獲得總利潤最大的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,圓錐底面圓半徑為1,母線長為4,圖2為其側(cè)面展開圖.

1)求陰影部分面積π可作為最后結(jié)果);

2)母線SC是一條蜜糖線,一只螞蟻從A沿著圓錐表面最少需要爬多遠(yuǎn)才能吃到蜜糖?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAC=∠ACD90°,∠ABC=∠ADCCEAD,且BE平分∠ABC,則下列結(jié)論:①ADBC;②∠ACE=∠ABC;③∠ECD+∠EBC=∠BEC;④∠CEF=∠CFE.其中正的是(

A. ①②B. ①③④C. ①②④D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,E是BC中點(diǎn),點(diǎn)O在AB上,以O(shè)B為半徑的O經(jīng)過點(diǎn)AE上的一點(diǎn)M,分別交AB,BC于點(diǎn)F,G,連BM,此時(shí)FBM=CBM.

(1)求證:AM是O的切線;

(2)當(dāng)BC=6,OB:OA=1:2 時(shí),求,AM,AF圍成的陰影部分面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案