【題目】拋物線軸交于點(0,3)

1)求的值及拋物線與軸的交點坐標(biāo);

2取什么值時,拋物線在軸下方?

3取什么值時,的值隨著的增大而增大?

【答案】13 (-1,0),(3,0);(2x<-1x3;(3)

【解析】

1)將點代入二次函數(shù)的解析式可求出m的值,然后可得二次函數(shù)的解析式,再令即可求出拋物線與軸的交點坐標(biāo);

2)根據(jù)二次函數(shù)的圖象和拋物線與軸的交點坐標(biāo)即可得;

3)將二次函數(shù)的解析式化為頂點式,得出其增減性即可得.

1)將點代入得:

則二次函數(shù)的解析式為

得:

解得

則拋物線與軸的交點坐標(biāo)為;

2)二次函數(shù)的開口向下

結(jié)合(1)可得:當(dāng)時,拋物線在軸下方;

3)二次函數(shù)的頂點式為

二次函數(shù)的增減性為:當(dāng)時,yx的增大而增大;當(dāng)時,yx的增大而減小

則當(dāng)時,的值隨著的增大而增大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線L1:y=﹣x2+bx+c經(jīng)過點A(1,0)和點B(5,0)已知直線l的解析式為y=kx﹣5.

(1)求拋物線L1的解析式、對稱軸和頂點坐標(biāo).

(2)若直線l將線段AB分成1:3兩部分,求k的值;

(3)當(dāng)k=2時,直線與拋物線交于M、N兩點,點P是拋物線位于直線上方的一點,當(dāng)PMN面積最大時,求P點坐標(biāo),并求面積的最大值.

(4)將拋物線L1在x軸上方的部分沿x軸折疊到x軸下方,將這部分圖象與原拋物線剩余的部分組成的新圖象記為L2

直接寫出y隨x的增大而增大時x的取值范圍;

直接寫出直線l與圖象L2有四個交點時k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我省某工廠為全運會設(shè)計了一款成本每件20元的工藝品,投放市場試銷后發(fā)現(xiàn)銷售量y(件)是售價x(/)的一次函數(shù),當(dāng)售價為23/件時,每天銷售量為790件;當(dāng)售價為25/件,每天銷售量為750.

1)求yx的函數(shù)關(guān)系;

2)如果該工藝品最高不超過每件30元,那么售價定位每件多少元時,工藝廠銷售該工藝品每天獲得的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)水果店張阿姨以每斤2元的價格購進(jìn)某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.

1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線yax2+bx+ca≠0)的頂點為C(1,4),交x軸于AB兩點,交y軸于點D,其中點B的坐標(biāo)為(30)

1)求拋物線的解析式;

2)如圖2,點P為直線BD上方拋物線上一點,若,請求出點P的坐標(biāo).

3)如圖3,M為線段AB上的一點,過點MMNBD,交線段AD于點N,連接MD,若DNM∽△BMD,請求出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校要舉辦一次演講比賽,每班只能選一人參加比賽.但八年級一班共有甲、乙兩人的演講水平相不相上下,現(xiàn)要在他們兩人中選一人去參加全校的演講比賽,經(jīng)班主任與全班同學(xué)協(xié)商決定用摸小球的游戲來確定誰去參賽(勝者參賽).

游戲規(guī)則如下:在兩個不透明的盒子中,一個盒子里放著兩個紅球,一個白球;另一個盒子里放著三個白球,一個紅球,從兩個盒子中各摸一個球,若摸得的兩個球都是紅球,甲勝;摸得的兩個球都是白球,乙勝,否則,視為平局.若為平局,繼續(xù)上述游戲,直至分出勝負(fù)為止.

根據(jù)上述規(guī)則回答下列問題:

(1)從兩個盒子各摸出一個球,一個球為白球,一個球為紅球的概率是多少?

(2)該游戲公平嗎?請用列表或樹狀圖等方法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系xOy中,RtAOB的直角邊OB,OA分別在x軸上和y軸上,其中OA=2,OB=4,現(xiàn)將RtAOB繞著直角頂點O按逆時針方向旋轉(zhuǎn)90°得到COD,已知一拋物線經(jīng)過C、D、B三點.

1)該拋物線的解析式為  

2)設(shè)點E是拋物線上位于第一象限的動點,過點EEFx軸于點F,并交直線ABN,過點E再作EMAB于點M,求EMN周長的最大值;

3)當(dāng)EMN的周長最大時,在直線EF上是否存在點Q,使得QCD是以CD為直角邊的直角三角形?若存在請求出點Q的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x1≤x≤90)天的售價與銷售量的相關(guān)信息如下表:

時間x(天)

1≤x50

50≤x≤90

售價(元/件)

x40

90

每天銷量(件)

2002x

已知該商品的進(jìn)價為每件30元,設(shè)銷售該商品的每天利潤為y[

1)求出yx的函數(shù)關(guān)系式;

2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大,最大利潤是多少?

3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】OAB在第一象限中,OAABOAAB,O是坐標(biāo)原點,且函數(shù)y正好過A,B兩點,BEx軸于E點,則OE2BE2的值為( 。

A. 3B. 2C. 3D. 4

查看答案和解析>>

同步練習(xí)冊答案