【題目】把一張矩形紙片ABCD按如圖方式折疊,使頂點B落在邊AD上(記為點B′),點A落在點A′處,折痕分別與邊AD、BC交于點E、F.
(1)試在圖中連接BE,求證:四邊形BFB′E是菱形;
(2)若AB=8,BC=16,求線段BF長能取到的整數(shù)值.
【答案】(1)證明見解析(2)8,9,10
【解析】試題分析:(1)連接BB′,由折疊知點B、B′關于EF對稱,可知BE=B′E,BF=B′F,然后根據(jù)矩形的性質(zhì)可證∠B′EF=B′FE,從而得到BE=B′E=B′F=BF,再由四條邊都相等的四邊形是菱形得證;
(2)如圖1,當點E與點A重合時,四邊形ABFB′是正方形,此時BF最小;如圖2,當點B與點D重合時,BF最大,然后由勾股定理可求出范圍,然后取整即可.
試題解析:(1)連接BB′.由折疊知點B、B′關于EF對稱.
∴EF是線段BB′的垂直平分線.
∴BE=B′E,BF=B′F.
∵四邊形ABCD是矩形,
∴AD∥BC.
∴∠B′EF=∠BFE.
由折疊得B′FE=∠BFE.
∴∠B′EF=B′FE.
∴B′E=B′F.
∴BE=B′E=B′F=BF.
∴四邊形BFB′E是菱形.
(2)如圖1,當點E與點A重合時,四邊形ABFB′是正方形,此時BF最。
∵四邊形ABFB′是正方形,
∴BF=AB=8,即BF最小為8.
如圖2,當點B與點D重合時,BF最大.
設BF=,則CF=,DF=BF=.
在Rt△CDF中,由勾股定理得CF2+CD2=DF2.
∴=,解得=10,即BF=10.
∴8≤BF≤10.
∴線段BF長能取到的整數(shù)值為8,9,10.
科目:初中數(shù)學 來源: 題型:
【題目】某企業(yè)生產(chǎn)并銷售某種產(chǎn)品,假設銷售量與產(chǎn)量相等,如圖中的折線ABD、線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本y1(單位:元)、銷售價y2(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關系.
(1)求線段AB所表示的y1與x之間的函數(shù)表達式;線段CD所表示的y2與x之間的函數(shù)表達式.
(2)當該產(chǎn)品產(chǎn)量為多少時,獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種糧大戶共有5塊小麥試驗地,每塊試驗地今年的收成與去年相比情況如下(增產(chǎn)為正,減產(chǎn)為負,單位:kg):49,-30,12,-15,28,請你計算一下,今年的小麥產(chǎn)量與去年相比增產(chǎn)________kg.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個,小穎做摸球?qū)嶒,她將盒子里面的球攪勻后從中隨機摸出一個球記下顏色,再把它放回盒子中,不斷重復上述過程,下表是實驗中的一組統(tǒng)計數(shù)據(jù):
摸球的次數(shù) | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次數(shù) | 65 | 124 | 178 | 302 | 481 | 599 | 1803 |
摸到白球的頻率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)請估計:當很大時,摸到白球的頻率將會接近 .(精確到0.1)
(2)假如你摸一次,你摸到白球的概率P(白球)= .
(3)試估算盒子里黑、白兩種顏色的球各有多少只?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,設點P(x1,y1),Q(x2,y2)是圖形W上的任意兩點.
定義圖形W的測度面積:若|x1﹣x2|的最大值為m,|y1﹣y2|的最大值為n,則S=mn為圖形W的測度面積.
例如,若圖形W是半徑為1的⊙O,當P,Q分別是⊙O與x軸的交點時,如圖1,|x1﹣x2|取得最大值,且最大值m=2;當P,Q分別是⊙O與y軸的交點時,如圖2,|y1﹣y2|取得最大值,且最大值n=2.則圖形W的測度面積S=mn=4
(1)若圖形W是等腰直角三角形ABO,OA=OB=1.
①如圖3,當點A,B在坐標軸上時,它的測度面積S= ;
②如圖4,當AB⊥x軸時,它的測度面積S= ;
(2)若圖形W是一個邊長1的正方形ABCD,則此圖形的測度面積S的最大值為 ;
(3)若圖形W是一個邊長分別為3和4的矩形ABCD,求它的測度面積S的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將7張如圖①所示的長為a、寬為b(a>b)的小長方形紙片,按如圖②所示的方式不重疊地放在長方形ABCD內(nèi),未被覆蓋的部分(兩個長方形)用陰影表示,設左上角與右下角的陰影部分的面積之差為S,當BC的長度變化時,按照同樣的放置方式,S始終保持不變,則a、b應滿足( )
A. a=b B. a=3b C. a=b D. a=4b
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com