【題目】如圖,將邊長為a與b、對(duì)角線長為c的長方形紙片ABCD,繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到長方形FGCE,連接AF.通過用不同方法計(jì)算梯形ABEF的面積可驗(yàn)證勾股定理,請(qǐng)你寫出驗(yàn)證的過程.

【答案】a2+b2=c2

【解析】

試題分析:根據(jù)S梯形ABEF=SABC+SCEF+SACF,利用三角形以及梯形的面積公式即可證明.

證明:S梯形ABEF=(EF+AB)BE=(a+b)(a+b)=(a+b)2,

RtCDARtCGF,

∴∠ACD=CFG

∵∠CFG+GCF=90°

∴∠ACD+GCF=90°,

ACF=90°,

S梯形ABEF=SABC+SCEF+SACF

S梯形ABEF=ab+ab+c2,

(a+b)2=ab+ab+c2

a2+2ab+b2=2ab+c2

a2+b2=c2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算或化簡
(1) +|﹣2|﹣4sin45°﹣( 1
(2)解方程 =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,邊長為2的正方形OABC的頂點(diǎn)A、C分別在x軸、y軸的正半軸上,二次函數(shù)y=﹣ x2+bx+c的圖象經(jīng)過B、C兩點(diǎn).

(1)求該二次函數(shù)的解析式;
(2)結(jié)合函數(shù)的圖象探索:當(dāng)y>0時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=AD,那么添加下列一個(gè)條件后,仍無法判定ABC≌△ADC的是( 。

A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠BAD=C=90°,AB=AD=9,AEBCE,AE=8,則CD的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,直線y=kx+1(k≠0)與雙曲線y= (x>0)相交于點(diǎn)P(1,m ).

(1)求k的值;
(2)若點(diǎn)Q與點(diǎn)P關(guān)于直線y=x成軸對(duì)稱,則點(diǎn)Q的坐標(biāo)是Q();
(3)若過P、Q二點(diǎn)的拋物線與y軸的交點(diǎn)為N(0, ),求該拋物線的函數(shù)解析式,并求出拋物線的對(duì)稱軸方程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以點(diǎn)O為圓心的兩個(gè)同心圓中,大圓的弦AB是小圓的切線,點(diǎn)P為切點(diǎn),AB=12 ,OP=6,則劣弧AB的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在正方形ABCD和正方形CGEF中,點(diǎn)B、C、G在同一條直線上,M是線段AE的中點(diǎn),DM的延長線交EF于點(diǎn)N,連接FM,易證:DM=FM,DM⊥FM(無需寫證明過程)

(1)如圖2,當(dāng)點(diǎn)B、C、F在同一條直線上,DM的延長線交EG于點(diǎn)N,其余條件不變,試探究線段DM與FM有怎樣的關(guān)系?請(qǐng)寫出猜想,并給予證明;
(2)

如圖3,當(dāng)點(diǎn)E、B、C在同一條直線上,DM的延長線交CE的延長線于點(diǎn)N,其余條件不變,探究線段DM與FM有怎樣的關(guān)系?請(qǐng)直接寫出猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(題文)某校組織學(xué)生參加周末郊游”.甲旅行社說:只要一名學(xué)生買全票,則其余學(xué)生可享受半價(jià)優(yōu)惠.”乙旅行社說:全體學(xué)生都可按6折優(yōu)惠”.已知全票價(jià)為240.

(1)設(shè)學(xué)生人數(shù)為x,甲旅行社收費(fèi)為y甲(元),乙旅行社收費(fèi)為y乙(元),用含x的式子表示出y甲與y乙;

(2)就學(xué)生人數(shù)x討論哪一家旅行社更優(yōu)惠.

查看答案和解析>>

同步練習(xí)冊(cè)答案