【題目】如圖,在直角坐標(biāo)系中,直線y=kx+1(k≠0)與雙曲線y= (x>0)相交于點P(1,m ).
(1)求k的值;
(2)若點Q與點P關(guān)于直線y=x成軸對稱,則點Q的坐標(biāo)是Q();
(3)若過P、Q二點的拋物線與y軸的交點為N(0, ),求該拋物線的函數(shù)解析式,并求出拋物線的對稱軸方程.
【答案】
(1)
∵直線y=kx+1與雙曲線y= (x>0)交于點A(1,m),
∴m=2,
把A(1,2)代入y=kx+1得:k+1=2,
解得:k=1;
(2)2,1
(3)
設(shè)拋物線的函數(shù)解析式為y=ax2+bx+c,
∵過P、Q二點的拋物線與y軸的交點為N(0, ),
∴ ,
解得: ,
∴拋物線的函數(shù)解析式為y=﹣ x2+x+ ,
∴對稱軸方程x=﹣ = .
【解析】解:(2)連接PO,QO,PQ,作PA⊥y軸于A,QB⊥x軸于B,則PA=1,OA=2,
∵點Q與點P關(guān)于直線y=x成軸對稱,
∴直線y=x垂直平分PQ,
∴OP=OQ,
∴∠POA=∠QOB,
在△OPA與△OQB中,
,
∴△POA≌△QOB,
∴QB=PA=1,OB=OA=2,
∴Q(2,1);
所以答案是:2,1;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把△ABC紙片沿DE折疊,當(dāng)點A落在四邊形BCDE內(nèi)部時,∠A與∠1、∠2之間的數(shù)量關(guān)系為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在第1個△ABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一點C,延長AA1到A2,使得在第2個△A1CA2中,∠A1CA2=∠A1 A2C;在A2C上取一點D,延長A1A2到A3,使得在第3個△A2DA3中,∠A2DA3=∠A2 A3D;…,按此做法進行下去,第3個三角形中以A3為頂點的內(nèi)角的度數(shù)為 ;第n個三角形中以An為頂點的內(nèi)角的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是四邊形ABCD外接圓上任意一點,且不與四邊形頂點重合,若AD是⊙O的直徑,AB=BC=CD.連接PA,PB,PC,若PA=a,則點A到PB和PC的距離之和AE+AF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為a與b、對角線長為c的長方形紙片ABCD,繞點C順時針旋轉(zhuǎn)90°得到長方形FGCE,連接AF.通過用不同方法計算梯形ABEF的面積可驗證勾股定理,請你寫出驗證的過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于二次函數(shù)y=﹣ +x﹣4,下列說法正確的是( )
A.當(dāng)x>0時,y隨x的增大而增大
B.當(dāng)x=2時,y有最大值﹣3
C.圖象的頂點坐標(biāo)為(﹣2,﹣7)
D.圖象與x軸有兩個交點
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了提升初中學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生的創(chuàng)新精神,舉辦“玩轉(zhuǎn)數(shù)學(xué)”比賽.現(xiàn)有甲、乙、丙三個小組進入決賽,評委從研究報告、小組展示、答辯三個方面為各小組打分,各項成績均按百分制記錄.甲、乙、丙三個小組各項得分如表:
小組 | 研究報告 | 小組展示 | 答辯 |
甲 | 91 | 80 | 78 |
乙 | 81 | 74 | 85 |
丙 | 79 | 83 | 90 |
(1)計算各小組的平均成績,并從高分到低分確定小組的排名順序;
(2)如果按照研究報告占40%,小組展示占30%,答辯占30%計算各小組的成績,哪個小組的成績最高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,點M為射線AE上任意一點(不與A重合),連接CM,將線段CM繞點C按順時針方向旋轉(zhuǎn)90°得到線段CN,直線NB分別交直線CM、射線AE于點F、D.
(1)直接寫出∠NDE的度數(shù).
(2)如圖2、圖3,當(dāng)∠EAC為銳角或鈍角時,其他條件不變,(1)中的結(jié)論是否發(fā)生變化?如果不變,選取其中一種情況加以證明;如果變化,請說明理由.
(3)如圖4,若∠EAC=15°,∠ACM=60°,直線CM與AB交于G,BD=,其他條件不變,求線段AM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小敏做了一個角平分儀ABCD,其中AB=AD,BC=DC,將儀器上的點A與∠PRQ的頂點R重合,調(diào)整AB和AD,使它們分別落在角的兩邊上,過 點A,C 畫一條射線AE,AE就是∠PRQ的平分線。此角平分儀的畫圖原理是:根據(jù)儀器結(jié)構(gòu),可得△ABC≌△ADC,這樣就有∠QAE=∠PAE。則說明這兩個三角形全等的依據(jù)是( )
A. SSS B. SAS C. ASA D. AAS
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com