【題目】如圖,小敏做了一個角平分儀ABCD,其中AB=AD,BC=DC,將儀器上的點A與∠PRQ的頂點R重合,調(diào)整ABAD,使它們分別落在角的兩邊上,過 A,C 畫一條射線AE,AE就是∠PRQ的平分線。此角平分儀的畫圖原理是:根據(jù)儀器結(jié)構(gòu),可得△ABC≌△ADC,這樣就有∠QAE=∠PAE。則說明這兩個三角形全等的依據(jù)是(

A. SSS B. SAS C. ASA D. AAS

【答案】A

【解析】

ADCABC中,由于AC為公共邊,AB=AD,BC=DC,利用SSS定理可判定ADC≌△ABC,進而得到∠DAC=BAC,即∠QAE=PAE.

ADCABC中,

ADCABC(SSS),

∴∠DAC=BAC,

即∠QAE=PAE.

故選:A.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,直線y=kx+1(k≠0)與雙曲線y= (x>0)相交于點P(1,m ).

(1)求k的值;
(2)若點Q與點P關(guān)于直線y=x成軸對稱,則點Q的坐標是Q();
(3)若過P、Q二點的拋物線與y軸的交點為N(0, ),求該拋物線的函數(shù)解析式,并求出拋物線的對稱軸方程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】加強中小學生安全教育,某校組織了“防溺水”知識競賽,對表現(xiàn)優(yōu)異的班級進行獎勵,學校購買了若干副乒乓球拍和羽毛球拍,購買2副乒乓球拍和1副羽毛球拍共需116元;購買3幅乒乓球拍和2幅羽毛球拍共需204元.

(1)求購買1副乒乓球拍和1副羽毛球拍各需多少元;

(2)學校購買乒乓球拍和羽毛球拍共30幅,且支出不超過1480元,則最多能夠購買多少副羽毛球拍?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】春種一粒粟,秋收萬顆子,唐代詩人李紳這句詩中的即谷子(去皮后則稱為小米),被譽為中華民族的哺育作物.我省有著小雜糧王國的美譽,谷子作為我省雜糧面積為2000萬畝,年總產(chǎn)量為150萬噸,我省谷子平均畝產(chǎn)量為160kg,國內(nèi)其他地區(qū)谷子的平均畝產(chǎn)量為60kg請解答下列問題:

(1)求我省2016年谷子的種植面積是多少萬畝.

(2)2017年,若我省谷子的平均畝產(chǎn)量仍保持160kg不變,要使我省谷子的年總產(chǎn)量不低于52萬噸,那么,今年我省至少應(yīng)再多種植多少萬畝的谷子?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(題文)某校組織學生參加周末郊游”.甲旅行社說:只要一名學生買全票,則其余學生可享受半價優(yōu)惠.”乙旅行社說:全體學生都可按6折優(yōu)惠”.已知全票價為240.

(1)設(shè)學生人數(shù)為x,甲旅行社收費為y甲(元),乙旅行社收費為y乙(元),用含x的式子表示出y甲與y乙;

(2)就學生人數(shù)x討論哪一家旅行社更優(yōu)惠.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:在ABC,ADE中,BAC=DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連接BD.圖中的CE、BD有怎樣的大小和位置關(guān)系?試證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠AOB=90°,OC是∠AOB的平分線,按以下要求解答問題.

(1)將三角板的直角頂點P在射線OC上移動,兩直角邊分別與OA,OB交于M,N,如圖①,求證:PM=PN;

(2)將三角板的直角頂點P在射線OC上移動,一條直角邊與OB交于N,另一條直角邊與射線OA的反向延長線交于點M,并猜想此時①中的結(jié)論PM=PN是否成立,并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:四邊形ABCD是正方形,E是AB邊上一點,F(xiàn)是BC延長線上一點,且DE=DF.
(1)如圖1,求證:DF⊥DE;

(2)如圖2,連接AC,EF交于點M,求證:M是EF的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E為AB邊的中點,G,F(xiàn)分別為AD,BC邊上的點,若AG=1,BF=2,∠GEF=90°,求GF的長.

查看答案和解析>>

同步練習冊答案