【題目】如圖1,ADBD分別是△ABC的內(nèi)角∠BAC、∠ABC的平分線,過(guò)點(diǎn)AAEAD,交BD的延長(zhǎng)線于點(diǎn)E.

1)求證:∠EC;

2)如圖2,如果AEAB,且BDDE23,求cosABC的值;

3)如果∠ABC是銳角,且ABCADE相似,求∠ABC的度數(shù),并直接寫(xiě)出的值.

【答案】1)見(jiàn)解析;(2cosABC的值為23;(3)∠ABC30°或∠ABC45°,的值

【解析】

1)由AEAD,得到∠DAE90°,∠E90°-∠ADE,再由AD平分∠BAC,得到∠ABDBAC,即可解答

2)延長(zhǎng)ADBC于點(diǎn)F,得出,再利用三角函數(shù)即可即可

3)根據(jù)題意得出∠ABC=∠EC,繼而可得∠ABC30°,∠ABC45°,即可解答

證明:∵AEAD,

∴∠DAE90°,∠E90°-∠ADE.

AD平分∠BAC,∴∠BADBAC,同理∠ABDBAC

又∵∠ADE=∠BAD+∠ABD,∠BAC+∠ABC180°-∠C

∴∠ADE(∠BAC+∠BAC180°-∠C.

∴∠E90°180°-∠CC

解:延長(zhǎng)ADBC于點(diǎn)F.

AEAB,∴∠ABE=∠E.

BE平分∠ABC,∴∠ABE=∠CBE,∴∠CBE=∠E.

AE BC.

∴∠AFB=∠FAE90°,

又∵BDDE23

cosABC

cosABC的值為23.

3)解:△ABC與△ADE相似,且∠DAE90°

∴△ABC中必有一個(gè)內(nèi)角等于90°.

ABC是銳角,

∴∠ABC≠90°.

若∠BAC=∠DAE90°,

∵∠EC,∴∠ABC=∠EC

∵∠ABC+∠C90°,∴∠ABC30°.這時(shí)

綜上所述,∠ABC30°或∠ABC45°的值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校想知道九年級(jí)學(xué)生對(duì)我國(guó)倡導(dǎo)的一帶一路的了解程度,隨機(jī)抽取部分九年級(jí)學(xué)生進(jìn)行問(wèn)卷調(diào)查,問(wèn)卷設(shè)有4個(gè)選項(xiàng)(每位被調(diào)查的學(xué)生必選且只選一項(xiàng)):A.非常了解.B.了解.C.知道一點(diǎn).D.完全不知道.將調(diào)查的結(jié)果繪制如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息,解答下列問(wèn)題:

1)求本次共調(diào)查了多少學(xué)生?

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)該校九年級(jí)共有600名學(xué)生,請(qǐng)你估計(jì)了解的學(xué)生約有多少名?

4)在非常了解3人中,有2名女生,1名男生,老師想從這3人中任選兩人做宣傳員,請(qǐng)用列表或畫(huà)樹(shù)狀圖法求出被選中的兩人恰好是一男生一女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題:

中華優(yōu)秀傳統(tǒng)文化是中華民族的“根”和“魂”.為傳承優(yōu)秀傳統(tǒng)文化,某校購(gòu)進(jìn)《西游記》和《三國(guó)演義》若干套,其中每套《西游記》的價(jià)格比每套《三國(guó)演義》的價(jià)格多40元,用3200元購(gòu)買(mǎi)《三國(guó)演義》的套數(shù)是用2400元購(gòu)買(mǎi)《西游記》套數(shù)的2倍,求每套《三國(guó)演義》的價(jià)格.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:

求作:,使得

作法:

①以為圓心,任意長(zhǎng)為半徑畫(huà)弧,分別交,于點(diǎn);

②畫(huà)一條射線,以點(diǎn)為圓心,長(zhǎng)為半徑畫(huà)弧,交于點(diǎn);

③以點(diǎn)為圓心,長(zhǎng)為半徑畫(huà)弧,與第②步中所畫(huà)的弧相交于點(diǎn);

④過(guò)點(diǎn)畫(huà)射線,則

根據(jù)上面的作法,完成以下問(wèn)題:

1)使用直尺和圓規(guī),作出(請(qǐng)保留作圖痕跡).

2)完成下面證明的過(guò)程(注:括號(hào)里填寫(xiě)推理的依據(jù)).

證明:由作法可知,   ,

   

.(   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC,C=90°,AC=3,BC=4,點(diǎn)E,F分別在邊BC,AC上,沿EF所在的直線折疊∠C,使點(diǎn)C的對(duì)應(yīng)點(diǎn)D恰好落在邊AB上,若△EFC和△ABC相似,則AD的長(zhǎng)為___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)(探究發(fā)現(xiàn))

如圖1,的頂點(diǎn)在正方形兩條對(duì)角線的交點(diǎn)處,,將繞點(diǎn)旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,的兩邊分別與正方形的邊交于點(diǎn)和點(diǎn)(點(diǎn)與點(diǎn),不重合).則之間滿(mǎn)足的數(shù)量關(guān)系是   

2)(類(lèi)比應(yīng)用)

如圖2,若將(1)中的“正方形”改為“的菱形”,其他條件不變,當(dāng)時(shí),上述結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)猜想結(jié)論并說(shuō)明理由.

3)(拓展延伸)

如圖3,,,平分,,且,點(diǎn)上一點(diǎn),,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)數(shù)在數(shù)軸上的對(duì)應(yīng)點(diǎn)的位置如圖所示,則錯(cuò)誤的結(jié)論是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某海監(jiān)船以60海里/時(shí)的速度從A處出發(fā)沿正西方向巡邏,一可疑船只在A的西北方向的C處,海監(jiān)船航行1.5小時(shí)到達(dá)B處時(shí)接到報(bào)警,需巡査此可疑船只,此時(shí)可疑船只仍在B的北偏西方向的C處,然后,可疑船只以一定速度向正西方向逃離,海監(jiān)船立刻加速以90海里/時(shí)的速度追擊,在D處海監(jiān)船追到可疑船只,DB的北偏西方同.(以下結(jié)果保留根號(hào))

1)求B,C兩處之問(wèn)的距離;

2)求海監(jiān)船追到可疑船只所用的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù):

1)求證:二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn);

2)當(dāng)二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo)均為整數(shù),且a為負(fù)整數(shù)時(shí),求a的值及二次函數(shù)的解析式并畫(huà)出二次函數(shù)的圖象(不用列表,只要求用其與x軸的兩個(gè)交點(diǎn)A,BAB的左側(cè)),與y軸的交點(diǎn)C及其頂點(diǎn)D這四點(diǎn)畫(huà)出二次函數(shù)的大致圖象,同時(shí)標(biāo)出A,B,CD的位置);

3)在(2)的條件下,二次函數(shù)的圖象上是否存在一點(diǎn)P使?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案