【題目】如圖所示,在銳角三角形ABC中,AB=8,AC=5,BC=6,沿過點(diǎn)B的直線折疊這個三角形,使點(diǎn)C落在AB邊上的點(diǎn)E處,折痕為BD,下列結(jié)論:①∠CBD=∠EBD,②DE⊥AB,③三角形ADE的周長是7,④,⑤.其中正確的個數(shù)有( )
A.2B.3C.4D.5
【答案】C
【解析】
根據(jù)翻折變換的性質(zhì)得到DC=DE,BE=BC,,根據(jù)已知求出AE的長,根據(jù)三角形周長公式計算即可,根據(jù)高相等判斷 ,根據(jù)△BCD△BDE判斷①的對錯,根據(jù)等高,則面積的比等于底邊的比判斷⑤.
根據(jù)翻折變換的性質(zhì)得到DC=DE,BE=BC=6,,
故DE⊥AB錯誤,即②錯誤
∴△BCD△BDE,
∴∠CBD=∠EBD,故①正確;
∵AB=8,∴AE=AB-BE=2,
△AED的周長為:AD+AE+DE=AC+AE=7,故③正確;
設(shè)三角形BCD的高為h,則三角形BAD的高也為h
∴,故④正確;
當(dāng)三角形BCD的高為H,底邊為CD,則三角形BAD的高也為H,底邊為AD
∴,故⑤正確.
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A、D、E在同一直線上,若AE=24,DE=17.
(1)求證:△CAD≌△CBE;
(2)求線段AB的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.在Rt△ABC中,∠A=90°,AB=AC=4.點(diǎn)E為Rt△ABC邊上一點(diǎn),以每秒1單位的速度從點(diǎn)C出發(fā),沿著C→A→B的路徑運(yùn)動到點(diǎn)B為止.連接CE,以點(diǎn)C為圓心,CE長為半徑作⊙C,⊙C與線段BC交于點(diǎn)D.設(shè)扇形DCE面積為S,點(diǎn)E的運(yùn)動時間為t.則在以下四個函數(shù)圖象中,最符合扇形面積S關(guān)于運(yùn)動時間t的變化趨勢的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在中,,,,是上的一點(diǎn),,點(diǎn)從點(diǎn)出發(fā)沿射線方向以每秒個單位的速度向右運(yùn)動.設(shè)點(diǎn)的運(yùn)動時間為.連結(jié).
(1)當(dāng)秒時,求的長度(結(jié)果保留根號);
(2)當(dāng)為等腰三角形時,求的值;
(3)過點(diǎn)做于點(diǎn).在點(diǎn)的運(yùn)動過程中,當(dāng)為何值時,能使?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市舉行知識大賽,A校、B校各派出5名選手組成代表隊參加決賽,兩校派出選手的決賽成績?nèi)鐖D所示.
根據(jù)圖示填寫下表:
平均數(shù)分 | 中位數(shù)分 | 眾數(shù)分 | |
A校 | ______ | 85 | ______ |
B校 | 85 | ______ | 100 |
結(jié)合兩校成績的平均數(shù)和中位數(shù),分析哪個學(xué)校的決賽成績較好;
計算兩校決賽成績的方差,并判斷哪個學(xué)校代表隊選手成績較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD的對角線AC和BD相交于點(diǎn)E,AD=DC,DC2=DEDB,求證:
(1)△BCE∽△ADE;
(2)ABBC=BDBE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是反比例函數(shù)y=的圖象的一支.
(1)求m的取值范圍,并在圖中畫出另一支的圖象;
(2)若m=-1,P(a,3)是雙曲線上的一點(diǎn),PH⊥y軸于H,將線段OP向右平移3PH的長度至O′P′,此時P的對應(yīng)點(diǎn)P′恰好在另一條雙曲線y=的圖象上,則平移中線段OP掃過的面積為 ,k= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在△ABC中,AD是BC邊上的高線,CE是AB邊上的中線,DG⊥CE于G,CG=EG
(1)求證:CD=AE;
(2)若AD=BD,CD=2,則求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了促進(jìn)節(jié)能減排,倡導(dǎo)節(jié)約用電,某市將實(shí)行居民生活用電階梯電價方案,圖中折線反映了每戶每月用電電費(fèi)y(元)與用電量x(度)間的函數(shù)關(guān)系式.
(1)根據(jù)圖象,階梯電價方案分為三個檔次,填寫下表:
檔次 | 第一檔 | 第二檔 | 第三檔 |
每月用電量x(度) | 0<x≤140 |
(2)小明家某月用電120度,需交電費(fèi) 元
(3)求第二檔每月電費(fèi)y(元)與用電量x(度)之間的函數(shù)關(guān)系式;
(4)在每月用電量超過230度時,每多用1度電要比第二檔多付電費(fèi)m元,小剛家某月用電290度,交電費(fèi)153元,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com