【題目】如圖.在Rt△ABCA=90°,AB=AC=4點(diǎn)ERt△ABC邊上一點(diǎn)以每秒1單位的速度從點(diǎn)C出發(fā),沿著CAB的路徑運(yùn)動(dòng)到點(diǎn)B為止連接CE以點(diǎn)C為圓心,CE長為半徑作CC與線段BC交于點(diǎn)D設(shè)扇形DCE面積為S,點(diǎn)E的運(yùn)動(dòng)時(shí)間為t則在以下四個(gè)函數(shù)圖象中,最符合扇形面積S關(guān)于運(yùn)動(dòng)時(shí)間t的變化趨勢的是( )

A. B.

C. D.

【答案】C

【解析】RtABC中,∠A=90°AB=AC=4,點(diǎn)E以每秒1個(gè)單位的速度從點(diǎn)C出發(fā),
∴當(dāng)0≤t≤4時(shí),扇形面積S=,

∴前半段函數(shù)圖象為開口向上的拋物線的一部分,故B選項(xiàng)錯(cuò)誤;

當(dāng)4<t≤8時(shí),隨著t的增大,扇形的半徑增大,而扇形的圓心角減小,

∴后半段函數(shù)圖象不是拋物線,故C選項(xiàng)錯(cuò)誤;

∵當(dāng)t=8時(shí),點(diǎn)E、D重合,

∴扇形的面積為0,故D選項(xiàng)錯(cuò)誤;

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:如圖,點(diǎn)為線段外一動(dòng)點(diǎn),且,若,,連接,求的最大值.解決方法:以為邊作等邊,連接,推出,當(dāng)點(diǎn)的延長線上時(shí),線段取得最大值

問題解決:如圖,點(diǎn)為線段外一動(dòng)點(diǎn),且,若,連接,當(dāng)取得最大值時(shí),的度數(shù)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Rt△ABC的邊AB=5,AC=4,BC=3,矩形DEFG的四個(gè)頂點(diǎn)都在RtABC的邊上,當(dāng)矩形DEFG的面積最大時(shí),其對(duì)角線的長為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程

(1)求證:不論k取什么實(shí)數(shù)值,這個(gè)方程總有實(shí)數(shù)根;

(2)若等腰三角形ABC的一邊長為,另兩邊的長bc恰好是這個(gè)方程的兩個(gè)根,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,于點(diǎn)D,點(diǎn)E是直線AC上一動(dòng)點(diǎn),連接DE,過點(diǎn)D,交直線BC于點(diǎn)F

探究發(fā)現(xiàn):

如圖1,若,點(diǎn)E在線段AC上,則______;

數(shù)學(xué)思考:

如圖2,若點(diǎn)E在線段AC上,則______用含m,n的代數(shù)式表示;

當(dāng)點(diǎn)E在直線AC上運(yùn)動(dòng)時(shí),中的結(jié)論是否任然成立請(qǐng)僅就圖3的情形給出證明;

拓展應(yīng)用:若,,請(qǐng)直接寫出CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,李師傅想用長為80米的柵欄,再借助教學(xué)樓的外墻圍成一個(gè)矩形的活動(dòng)區(qū). 已知教學(xué)樓外墻長50米,設(shè)矩形的邊米,面積為平方米.

(1)請(qǐng)寫出活動(dòng)區(qū)面積之間的關(guān)系式,并指出的取值范圍;

(2)當(dāng)為多少米時(shí),活動(dòng)區(qū)的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,、、、在同一直線上,下面有四個(gè)條件,請(qǐng)你從中選三個(gè)作為題設(shè),余下的一個(gè)作為結(jié)論,寫出一個(gè)正確的命題,并加以證明.

;②;③;④

解:我寫的真命題是:

中,已知:___________________

求證:_______________(不能只填序號(hào))

證明如下:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在銳角三角形ABC中,AB8,AC5,BC6,沿過點(diǎn)B的直線折疊這個(gè)三角形,使點(diǎn)C落在AB邊上的點(diǎn)E處,折痕為BD,下列結(jié)論:①∠CBD=∠EBD,②DEAB,③三角形ADE的周長是7,④,⑤.其中正確的個(gè)數(shù)有(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】猜想與證明:小強(qiáng)想證明下面的問題:“有兩個(gè)角(圖中的)相等的三角形是等腰三角形”.但他不小心將圖弄臟了,只能看見圖中的和邊

1)請(qǐng)問:他能夠把圖恢復(fù)成原來的樣子嗎?若能,請(qǐng)你幫他寫出至少兩種以上恢復(fù)的方法并在備用圖上恢復(fù)原來的樣子.

2)你能夠證明這樣的三角形是等腰三角形嗎?(至少用兩種方法證明)

查看答案和解析>>

同步練習(xí)冊答案