【題目】問(wèn)題背景:如圖,點(diǎn)為線(xiàn)段外一動(dòng)點(diǎn),且,若,連接,求的最大值.解決方法:以為邊作等邊,連接,推出,當(dāng)點(diǎn)的延長(zhǎng)線(xiàn)上時(shí),線(xiàn)段取得最大值

問(wèn)題解決:如圖,點(diǎn)為線(xiàn)段外一動(dòng)點(diǎn),且,若,,連接,當(dāng)取得最大值時(shí),的度數(shù)為_________

【答案】

【解析】

AC為直角邊,作等腰直角三角形CEACE =CA,∠ECA=90°,連接EB,利用SAS證出△ECB≌△ACD,從而得出EB=AD,然后根據(jù)兩點(diǎn)之間線(xiàn)段最短即可得出當(dāng)AD取得最大值時(shí),E、A、B三點(diǎn)共線(xiàn),然后求出∠CAB的度數(shù),根據(jù)等邊對(duì)等角和三角形的內(nèi)角和定理即可求出∠ACB,從而求出∠ACD

解:以AC為直角邊,作等腰直角三角形CEACE =CA,∠ECA=90°,連接EB

∴∠ECA+∠ACB=BCD+∠ACB

∴∠ECB=ACD

在△ECB和△ACD

∴△ECB≌△ACD

EB=AD

∴當(dāng)AD取得最大值時(shí),EB也取得最大值

根據(jù)兩點(diǎn)之間線(xiàn)段最短可知EBEAEB,當(dāng)且僅當(dāng)EA、B三點(diǎn)共線(xiàn)時(shí)取等號(hào)

即當(dāng)AD取得最大值時(shí),EA、B三點(diǎn)共線(xiàn),

∵△CEA為等腰直角三角形

∴∠CAE=45°

∴此時(shí)∠CAB=180°―CAE=135°

∴∠ACB=ABC=180°-∠CAB=°

∴∠ACD=ACB+∠BCD=

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列方程:

(1)x(x﹣1)=1﹣x

(2)x2+2x﹣35=0

(3)4x2﹣3=12x

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,D,E分別是ABAC上的點(diǎn),BECD交與點(diǎn)O,給出下列四個(gè)條件:①∠DBO=ECO,②∠BDO=CEO,③BD=CE,④OB=OC.

1)從上述四個(gè)條件中,任選兩個(gè)為條件,可以判定ABC是等腰三角形?寫(xiě)出所有可能的情況.

2)選擇(1)中的某一種情形,進(jìn)行說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊中,分別為的中點(diǎn),延長(zhǎng)至點(diǎn),使,連結(jié)

1)求證:

2)猜想:的面積與四邊形的面積的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016四川省攀枝花市)某市為了鼓勵(lì)居民節(jié)約用水,決定實(shí)行兩級(jí)收費(fèi)制度.若每月用水量不超過(guò)14噸(含14噸),則每噸按政府補(bǔ)貼優(yōu)惠價(jià)m元收費(fèi);若每月用水量超過(guò)14噸,則超過(guò)部分每噸按市場(chǎng)價(jià)n元收費(fèi).小明家3月份用水20噸,交水費(fèi)49元;4月份用水18噸,交水費(fèi)42元.

(1)求每噸水的政府補(bǔ)貼優(yōu)惠價(jià)和市場(chǎng)價(jià)分別是多少?

(2)設(shè)每月用水量為x噸,應(yīng)交水費(fèi)為y元,請(qǐng)寫(xiě)出yx之間的函數(shù)關(guān)系式;

(3)小明家5月份用水26噸,則他家應(yīng)交水費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等邊中,點(diǎn),分別在邊,上.

1)如圖,若,以為邊作等邊,于點(diǎn),連接

求證:①;

平分

2)如圖,若,作,的延長(zhǎng)線(xiàn)于點(diǎn),求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知兩條射線(xiàn)OMCN,動(dòng)線(xiàn)段AB的兩個(gè)端點(diǎn)A、B分別在射線(xiàn)OMCN上,且∠C=OAB=108°,F在線(xiàn)段CB上,OB平分∠AOF

1)請(qǐng)?jiān)趫D中找出與∠AOC相等的角,并說(shuō)明理由;

2)判斷線(xiàn)段ABOC 的位置關(guān)系是什么?并說(shuō)明理由;

3)若平行移動(dòng)AB,那么∠OBC與∠OFC的度數(shù)比是否隨著AB位置的變化而發(fā)生變化?若變化,找出變化規(guī)律;若不變,求出這個(gè)比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE90°,點(diǎn)AD、E在同一直線(xiàn)上,若AE24DE17

1)求證:△CAD≌△CBE;

2)求線(xiàn)段AB的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖.在Rt△ABCA=90°,AB=AC=4點(diǎn)ERt△ABC邊上一點(diǎn),以每秒1單位的速度從點(diǎn)C出發(fā),沿著CAB的路徑運(yùn)動(dòng)到點(diǎn)B為止連接CE以點(diǎn)C為圓心,CE長(zhǎng)為半徑作C,C與線(xiàn)段BC交于點(diǎn)D設(shè)扇形DCE面積為S點(diǎn)E的運(yùn)動(dòng)時(shí)間為t則在以下四個(gè)函數(shù)圖象中,最符合扇形面積S關(guān)于運(yùn)動(dòng)時(shí)間t的變化趨勢(shì)的是( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案