【題目】解下列方程:
(1)x(x﹣1)=1﹣x
(2)x2+2x﹣35=0
(3)4x2﹣3=12x
【答案】(1) x1=1,x2=﹣1;(2) x1=﹣7,x2=5;(3) x1=
【解析】
(1)移項(xiàng)后分解因式,即可得出兩個(gè)一元一次方程,求出方程的解即可;
(2)分解因式,即可得出兩個(gè)一元一次方程,求出方程的解即可;
(3)移項(xiàng)后求出b2-4ac的值,再代入公式求出即可.
解:(1)x(x﹣1)=1﹣x
x(x﹣1)+(x﹣1)=0,
(x﹣1)(x+1)=0,
x﹣1=0,x+1=0,
x1=1,x2=﹣1;
(2)x2+2x﹣35=0,
(x+7)(x﹣5)=0,
x+7=0,x﹣5=0,
x1=﹣7,x2=5;
(3)4x2﹣3=12x,
4x2﹣12x﹣3=0,
b2﹣4ac=(﹣12)2﹣4×4×(﹣3)=192,
x=,
x1= .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,圖形G上點(diǎn)P(x,y)的縱坐標(biāo)y與其橫坐標(biāo)x的差y-x稱為P點(diǎn)的“坐標(biāo)差”,而圖形G上所有點(diǎn)的“坐標(biāo)差”中的最大值稱為圖形G的“特征值”
(1)①點(diǎn)A(1,3) 的“坐標(biāo)差”為 。
②拋物線y=-x2+3x+3的“特征值”為 。
(2)某二次函數(shù)y=-x2+bx+c(c≠0) 的“特征值”為1,點(diǎn)B(m,0)與點(diǎn)C分別是此二次函數(shù)的圖象與x軸和y軸的交點(diǎn),且點(diǎn)B與點(diǎn)C的“坐標(biāo)差”相等。
①直接寫出m= (用含c的式子表示)
②求此二次函數(shù)的表達(dá)式。
(3)如圖,在平面直角坐標(biāo)系xOy中,以M(2,3)為圓心,2為半徑的圓與直線y=x相交于點(diǎn)D、E請直接寫出⊙M的“特征值”為 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD與四邊形A′B′C′D′是位似圖形,且它們的對應(yīng)邊的比為3:4,則四邊形ABCD與四邊形A′B′C′D′的周長之比為______,面積之比為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,錨標(biāo)浮筒是打撈作業(yè)中用來標(biāo)記錨或沉船位置的,它的上下兩部分是圓柱,中間是一個(gè)圓柱(如圖,單位:mm).電鍍時(shí),如果每平方米用鋅0.11kg,要電鍍1000個(gè)這樣的錨標(biāo)浮筒需要用多少鋅?(精確到1kg)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在寬20米,長32米的矩形耕地上,修筑同樣寬的三條路(兩條縱向,一條橫向,并且橫向與縱向互相垂直),把這塊耕地分成大小相等的六塊試驗(yàn)田,要使試驗(yàn)田的面積是570平方米,問道路應(yīng)該多寬?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,排球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y=a(xk)2+h.已知球與O點(diǎn)的水平距離為6m時(shí),達(dá)到最高2.6m,球網(wǎng)與O點(diǎn)的水平距離為9m.高度為2.43m,球場的邊界距O點(diǎn)的水平距離為18m,則下列判斷正確的是( )
A. 球不會(huì)過網(wǎng) B. 球會(huì)過球網(wǎng)但不會(huì)出界
C. 球會(huì)過球網(wǎng)并會(huì)出界 D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D在BC上,BD=6,CD=2,點(diǎn)P′是AB上的動(dòng)點(diǎn),則PC+PD的最小值是( 。
A.7B.8C.9D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)C關(guān)于拋物線對稱軸的對稱點(diǎn)為點(diǎn)D,拋物線頂點(diǎn)為H(1,2).
(1)求拋物線的解析式;
(2)點(diǎn)P為直線AD上方拋物線的對稱軸上一動(dòng)點(diǎn),連接PA,PD.當(dāng)S△PAD=3,若在x軸上存在一動(dòng)點(diǎn)Q,使PQ+QB最小,求此時(shí)點(diǎn)Q的坐標(biāo)及PQ+QB的最小值;
(3)若點(diǎn)E為拋物線上的動(dòng)點(diǎn),點(diǎn)G,F(xiàn)為平面內(nèi)的點(diǎn),以BE為邊構(gòu)造以B,E,F(xiàn),G為頂點(diǎn)的正方形,當(dāng)頂點(diǎn)F或者G恰好落在y軸上時(shí),求點(diǎn)E的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:如圖,點(diǎn)為線段外一動(dòng)點(diǎn),且,若,,連接,求的最大值.解決方法:以為邊作等邊,連接,推出,當(dāng)點(diǎn)在的延長線上時(shí),線段取得最大值.
問題解決:如圖,點(diǎn)為線段外一動(dòng)點(diǎn),且,若,,連接,當(dāng)取得最大值時(shí),的度數(shù)為_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com