【題目】將若干枝鉛筆分給甲、乙兩個(gè)班級(jí),甲班有一人分到6枝,其余的每人都分到13枝,乙班有一人分到5枝,其余的每人都分到10枝.如果分到兩個(gè)班級(jí)的鉛筆數(shù)目相同,并且大于100而不超過(guò)200那么甲、乙兩個(gè)班各有多少人?

【答案】甲班有14人,乙班有18人.

【解析】

設(shè)甲班有x人,乙班有y人,鉛筆有z支,根據(jù)甲組有一人分到6支鉛筆,其余每人都分到13支鉛筆;乙組有一人分到5支鉛筆,其余每人都分到10支鉛筆,已知鉛筆大于100而不超過(guò)200,可列出方程和不等式組.

設(shè)甲班有x人,乙班有y人,鉛筆有z支.由題意,得

z=13x-7=10y-5

100z≤200,

10013x-7≤200,

解得8x≤15,

又∵13x-2=10y,

13x的個(gè)位數(shù)是2

x的個(gè)位數(shù)是4,

x=14

y=18.

答:甲班有14人,乙班有18.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,RtOAB的頂點(diǎn)Ax軸的正半軸上,頂點(diǎn)B的坐標(biāo)為(3,),點(diǎn)C的坐標(biāo)為(10),點(diǎn)P為斜邊OB上的一動(dòng)點(diǎn),則PA+PC的最小值_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一矩形紙片ABCD,AB=8,AD=17,將此矩形紙片折疊,使頂點(diǎn)A落在BC邊的A處,折痕所在直線同時(shí)經(jīng)過(guò)邊AB、AD(包括端點(diǎn)),設(shè)BA=x,則x的取值范圍是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A的坐標(biāo)為(a,0),點(diǎn)C的坐標(biāo)為(0,b)且a、b滿足+|b6|0,點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿著OCBAO的線路移動(dòng).

1)點(diǎn)B的坐標(biāo)為   ;當(dāng)點(diǎn)P移動(dòng)3.5秒時(shí),點(diǎn)P的坐標(biāo)為   ;

2)在移動(dòng)過(guò)程中,當(dāng)點(diǎn)Px軸的距離為4個(gè)單位長(zhǎng)度時(shí),求點(diǎn)P移動(dòng)的時(shí)間;

3)在OCB的線路移動(dòng)過(guò)程中,是否存在點(diǎn)P使△OBP的面積是10,若存在求出點(diǎn)P移動(dòng)的時(shí)間;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD是△ABC的中線,AE∥BC,BE交AD于點(diǎn)F,交AC于G,F(xiàn)是AD的中點(diǎn).

(1)求證:四邊形ADCE是平行四邊形;

(2)若EB是∠AEC的角平分線,請(qǐng)寫(xiě)出圖中所有與AE相等的邊.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,A(a,0),C(b,2),且滿足(a2)20,過(guò)CCBx軸于B.

(1)求三角形ABC的面積;

(2)如圖②,若過(guò)BBDACy軸于D,且AEDE分別平分∠CAB,ODB,求∠AED的度數(shù);

(3)y軸上是否存在點(diǎn)P,使得三角形ACP和三角形ABC的面積相等?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解填空,并在括號(hào)內(nèi)填注理由.如圖,已知AB//CD,M,N分別交AB,CD于點(diǎn)E,F,,求證:EP//FQ.

證明:AB//CD(_________),

(__________).

(_____________)

(___________)

即:( )

EP//______.(________).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系中,三角形ABC的位置如圖所示.

1)請(qǐng)寫(xiě)出A、B、C三點(diǎn)的坐標(biāo);

2)求△ABC的面積;

3)△ABC經(jīng)過(guò)平移后得到△ABC′,已知△ABC內(nèi)的任意一點(diǎn)Px,y)在△ABC′內(nèi)的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)為(x+6,y+2).請(qǐng)你寫(xiě)出△ABC′各頂點(diǎn)的坐標(biāo)并圖中畫(huà)出△ABC′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某乒乓球的質(zhì)量檢驗(yàn)結(jié)果如下:

抽取的乒乓球數(shù)n

50

100

200

500

1000

1500

2000

優(yōu)等品的頻數(shù)m

48

95

188

x

948

1426

1898

優(yōu)等品的頻率(精確到0.001)

0.960

y

0.940

0.944

z

0.951

0.949

(1)根據(jù)表中信息可得:x=______,y=______,z=______

(2)從這批乒乓球中,任意抽取一只乒乓球是優(yōu)等品的概率的估計(jì)值是多少?(精確到0.01)

查看答案和解析>>

同步練習(xí)冊(cè)答案