【題目】愛(ài)好思考的小茜在探究?jī)蓷l直線的位置關(guān)系查閱資料時(shí),發(fā)現(xiàn)了“中垂三角形”,即兩條中線互相垂直的三角形稱為“中垂三角形”.如圖(1)、圖(2)、圖(3)中,AM、BN是△ABC的中線,AN⊥BN于點(diǎn)P,像△ABC這樣的三角形均為“中垂三角形”.設(shè)BC=a,AC=b,AB=c.
【特例探究】
(1)如圖1,當(dāng)tan∠PAB=1,c=4時(shí),a= ,b= ;
如圖2,當(dāng)∠PAB=30°,c=2時(shí),a= ,b= ;
【歸納證明】
(2)請(qǐng)你觀察(1)中的計(jì)算結(jié)果,猜想a2、b2、c2三者之間的關(guān)系,用等式表示出來(lái),并利用圖3證明你的結(jié)論.
【拓展證明】
(3)如圖4,ABCD中,E、F分別是AD、BC的三等分點(diǎn),且AD=3AE,BC=3BF,連接AF、BE、CE,且BE⊥CE于E,AF與BE相交點(diǎn)G,AD=3,AB=3,求AF的長(zhǎng).
【答案】(1)4,4;,.(2)a2+b2=5c2,理由見(jiàn)解析.(3)4.
【解析】
試題分析:(1)①首先證明△APB,△PEF都是等腰直角三角形,求出PA、PB、PE、PF,再利用勾股定理即可解決問(wèn)題.②連接EF,在RT△PAB,RT△PEF中,利用30°性質(zhì)求出PA、PB、PE、PF,再利用勾股定理即可解決問(wèn)題.(2)結(jié)論a2+b2=5c2.設(shè)MP=x,NP=y,則AP=2x,BP=2y,利用勾股定理分別求出a2、b2、c2即可解決問(wèn)題.(3)取AB中點(diǎn)H,連接FH并且延長(zhǎng)交DA的延長(zhǎng)線于P點(diǎn),首先證明△ABF是中垂三角形,利用(2)中結(jié)論列出方程即可解決問(wèn)題.
試題解析:(1)解:如圖1中,∵CE=AE,CF=BF,
∴EF∥AB,EF=AB=2,
∵tan∠PAB=1,
∴∠PAB=∠PBA=∠PEF=∠PFE=45°,
∴PF=PE=2,PB=PA=4,
∴AE=BF==2.
∴b=AC=2AE=4,a=BC=4.
如圖2中,連接EF,
,∵CE=AE,CF=BF,
∴EF∥AB,EF=AB=1,
∵∠PAB=30°,
∴PB=1,PA=,
在RT△EFP中,∵∠EFP=∠PAB=30°,
∴PE=,PF=,
∴AE==,BF==,
∴a=BC=2BF=,b=AC=2AE=,
(2)結(jié)論
證明:如圖3中,連接EF.
∵AF、BE是中線,
∴EF∥AB,EF=AB,
∴△FPE∽△APB,
∴==,
設(shè)FP=x,EP=y,則AP=2x,BP=2y,
∴a2=BC2=4BF2=4(FP2+BP2)=4x2+16y2,
b2=AC2=4AE2=4(PE2+AP2)=4y2+16x2,
c2=AB2=AP2+BP2=4x2+4y2,
∴a2+b2=20x2+20y2=5(4x2+4y2)=5c2.
(3)解:如圖4中,在△AGE和△FGB中,
,
∴△AGE≌△FGB,
∴BG=FG,取AB中點(diǎn)H,連接FH并且延長(zhǎng)交DA的延長(zhǎng)線于P點(diǎn),
同理可證△APH≌△BFH,
∴AP=BF,PE=CF=2BF,
即PE∥CF,PE=CF,
∴四邊形CEPF是平行四邊形,
∴FP∥CE,
∵BE⊥CE,
∴FP⊥BE,即FH⊥BG,
∴△ABF是中垂三角形,
由(2)可知AB2+AF2=5BF2,
∵AB=3,BF=AD=,
∴9+AF2=5×()2,
∴AF=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1、圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個(gè)小正方形的邊長(zhǎng)均為1,線段AC的兩個(gè)端點(diǎn)均在小正方形的頂點(diǎn)上.
(1)如圖1,點(diǎn)P在小正方形的頂點(diǎn)上,在圖1中作出點(diǎn)P關(guān)于直線AC的對(duì)稱點(diǎn)Q,連接AQ、QC、CP、PA,并直接寫(xiě)出四邊形AQCP的周長(zhǎng);
(2)在圖2中畫(huà)出一個(gè)以線段AC為對(duì)角線、面積為6的矩形ABCD,且點(diǎn)B和點(diǎn)D均在小正方形的頂點(diǎn)上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是揚(yáng)帆中學(xué)九年八班43名同學(xué)家庭人口的統(tǒng)計(jì)表:這43個(gè)家庭人口的眾數(shù)和中位數(shù)分別是( 。
家庭人口數(shù)(人) | 2 | 3 | 4 | 5 | 6 |
學(xué)生人數(shù)(人) | 3 | 15 | 10 | 8 | 7 |
A.5,6B.3,4C.3,5D.4,6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=BC,BD⊥BC于B,點(diǎn)E在 BC上,CE=BD,DC、AE交于點(diǎn)F.試問(wèn)DC與AE有何數(shù)量與位置關(guān)系?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列條件中不能判定△ABM≌△CDN的是( )
A. ∠M=∠N B. AM=CN C. AB=CD D. AM∥CN
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)三角形的兩邊長(zhǎng)分別為3和7,則第三邊的長(zhǎng)可能是( 。
A.5B.4C.3D.11
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市2018年汽車(chē)擁有量為16.9萬(wàn)輛.已知這個(gè)市2016年汽車(chē)擁有量為10萬(wàn)輛,設(shè)2016年至2018年這個(gè)市汽車(chē)擁有量的年平均增長(zhǎng)率為x,根據(jù)題意所列方程正確的是( )
A.10(1+x)2=16.9B.10(1+2x)=16.9
C.10(1-x)2=16.9D.10(1-2x)=16.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】菱形具有而矩形不具有的性質(zhì)是( )
A. 對(duì)角相等 B. 四邊相等 C. 對(duì)角線互相平分 D. 四角相等
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com