【題目】如圖,在△ABC中,∠ACB=90°,AC=15.sinA=,點DBC的中點,點PAB上一動點(不與點B重合),延長PDE,使DE=PD,連接EB、EC.

(1)求證;四邊形PBEC是平行四邊形;

(2)填空:

①當AP的值為   時,四邊形PBEC是矩形;

②當AP的值為   時,四邊形PBEC是菱形.

【答案】證明見解析;(2)①9;②12.5.

【解析】

1)根據(jù)對角線互相平分的四邊形為平行四邊形證明即可

2①若四邊形PBEC是矩形,則∠APC=90°,求得AP即可;

②若四邊形PBEC是菱形CP=PB,求得AP即可

∵點DBC的中點BD=CD

DE=PD,∴四邊形PBEC是平行四邊形

2①當∠APC=90°,四邊形PBEC是矩形

AC=15sinA=,PC=12由勾股定理得AP=9,∴當AP的值為9四邊形PBEC是矩形;

②在△ABC中,∵∠ACB=90°,AC=15sinA=,所以設BC=4x,AB=5x,則(4x2+152=(5x2解得x=5,AB=5x=25

PC=PB,四邊形PBEC是菱形,此時點PAB的中點,所以AP=12.5,∴當AP的值為12.5,四邊形PBEC是菱形

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,已知C90°,B50°,點D在邊BC上,BD2CD(圖4).把ABC繞著點D逆時針旋轉m0m180)度后,如果點B恰好落在初始RtABC的邊上,那么m_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知Rt△ABC中,∠ACB=90°,CD⊥ABD∠BAC的平分線分別交BC、CDE、F

1)求證:∠ACD∠B

2)求證:△CEF是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為提高學生的閱讀興趣,某學校建立了共享書架,并購買了一批書籍.其中購買種圖書花費了3000元,購買種圖書花費了1600元,A種圖書的單價是種圖書的1.5倍,購買種圖書的數(shù)量比種圖書多20本.

1)求兩種圖書的單價;

2)書店在世界讀書日進行打折促銷活動,所有圖書都按8折銷售學校當天購買了種圖書20本和種圖書25本,共花費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某自動化車間計劃生產(chǎn)480個零件,當生產(chǎn)任務完成一半時,停止生產(chǎn)進行自動化程序軟件升級,用時20分鐘,恢復生產(chǎn)后工作效率比原來提高了,結果完成任務時比原計劃提前了40分鐘,求軟件升級后每小時生產(chǎn)多少個零件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖:在平面直角坐標系中,點D是直線y=﹣x上一點,過O、D兩點的圓⊙O1分別交x軸、y軸于點A和B.

(1)當A(﹣12,0),B(0,﹣5)時,求O1的坐標;

(2)在(1)的條件下,過點A作⊙O1的切線與BD的延長線相交于點C,求點C的坐標;

(3)若點D的橫坐標為,點I為△ABO的內(nèi)心,IE⊥AB于E,當過O、D兩點的⊙O1的大小發(fā)生變化時,其結論:AE﹣BE的值是否發(fā)生變化?若不變,請求出其值;若變化,請求出變化范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,點邊上的動點,連接,以為斜邊在的下方作等腰直角三角形

1)填空:的面積等于 ;

2)連接,求證:的平分線;

3)點邊上,且, 從點出發(fā)運動至點停止時,求點相應的運動路程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為O的直徑,PD切O于點C,與BA的延長線交于點D,DEPO交PO延長線于點E,連接PB,EDB=EPB

(1)求證:PB是的切線

(2)若PB=6,DB=8,求O的半徑

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD是矩形紙片,翻折∠B、∠D,使BCAD恰好落在AC上.設F、H分別是B、D落在AC上的兩點,EG分別是折痕CE、AGAB、CD的交點.

1)求證:四邊形AECG是平行四邊形:

2)若AB=8cm,BC=6cm,求線段EF的長.

查看答案和解析>>

同步練習冊答案