【題目】在等邊△ABC中,DAC邊上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到△BAE,連接ED,若BC=5,BD=4,有下列結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△ADE的周長(zhǎng)是9.其中正確的個(gè)數(shù)是(

A. 4 B. 3 C. 2 D. 1

【答案】B

【解析】

首先由旋轉(zhuǎn)的性質(zhì)可知∠EAB=ABC=60°,所以可得AEBC;由△ABC是等邊三角形得出AC=AB=BC=5,根據(jù)圖形旋轉(zhuǎn)的性質(zhì)得出AE=CD,BD=BE,故可得出AE+AD=AD+CD=AC=5,由∠EBD=60°,BE=BD即可判斷出△BDE是等邊三角形,故DE=BD=4,故△AED的周長(zhǎng)=AE+AD+DE=AC+BD=9,綜上可得答案.

∵△ABC是等邊三角形,

∴∠ABC=C=60°,

∵將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE

∴∠EAB=C=ABC=60°,

AEBC,故結(jié)論①正確;

∵沒(méi)有條件證明∠ADE=BDC,

∴結(jié)論②錯(cuò)誤,

∵△ABC是等邊三角形,

AC=AB=BC=5,

∵△BAE是BCD逆時(shí)針旋轉(zhuǎn)60°得出,

AE=CD,BD=BE,∠EBD=60°,

AE+AD=AD+CD=AC=5,

∵∠EBD=60°,BE=BD

∴△BDE是等邊三角形,故結(jié)論③正確;

DE=BD=4,

∴△AED的周長(zhǎng)=AE+AD+DE=AC+BD=9,故結(jié)論④正確;

綜上所述:①③④結(jié)論正確,共3個(gè),

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程(組):

1

2

3

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,∠ABC=90°,AB=BC,三角形的頂點(diǎn)在相互平行的三條直線l1,l2,l3上,且l1,l2之間的距離為1l2,l3之間的距離為2,則AC的長(zhǎng)是( )

A. B. C. 5 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列運(yùn)算正確的個(gè)數(shù)是( )
①2a2﹣a2=a2;
+ =2 ;
③(π﹣3.14)0× =0;
④a2÷a× =a2
⑤sin30°+cos60°= ;
⑥精確到萬(wàn)位6295382≈6.30×106
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角梯形AOCD的邊OC在x軸上,O為坐標(biāo)原點(diǎn),CD垂直于x軸,D(5,4),AD=2.若動(dòng)點(diǎn)E、F同時(shí)從點(diǎn)O出發(fā),E點(diǎn)沿折線OA→AD→DC運(yùn)動(dòng),到達(dá)C點(diǎn)時(shí)停止;F點(diǎn)沿OC運(yùn)動(dòng),到達(dá)C點(diǎn)時(shí)停止,它們運(yùn)動(dòng)的速度都是每秒1個(gè)單位長(zhǎng)度.設(shè)E運(yùn)動(dòng)x秒時(shí),△EOF的面積為y(平方單位),則y關(guān)于x的函數(shù)圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠A=90°,C=30°,ADBCD,BE是∠ABC的平分線,且交ADP,如果AP=2,則AC的長(zhǎng)為( )

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,D為BC邊的中點(diǎn),過(guò)點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E、F.

(1)求證;DE=DF;

(2)若∠A=90°,圖中與DE相等的還有哪些線段?(不用說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點(diǎn)D為AB邊上的一點(diǎn).

(1)求證:△BCD≌△ACE;
(2)若AE=12,DE=15,求AB的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ECD的中點(diǎn),連接AE、BE,BEAE,延長(zhǎng)AEBC的延長(zhǎng)線于點(diǎn)F.

求證:(1)FC=AD;

(2)AB=BC+AD.

查看答案和解析>>

同步練習(xí)冊(cè)答案