【題目】如圖,直角梯形AOCD的邊OC在x軸上,O為坐標(biāo)原點,CD垂直于x軸,D(5,4),AD=2.若動點E、F同時從點O出發(fā),E點沿折線OA→AD→DC運動,到達C點時停止;F點沿OC運動,到達C點時停止,它們運動的速度都是每秒1個單位長度.設(shè)E運動x秒時,△EOF的面積為y(平方單位),則y關(guān)于x的函數(shù)圖象大致為( )

A.
B.
C.
D.

【答案】C
【解析】解:∵D(5,4),AD=2.

∴OC=5,CD=4,OA= =5,

∴運動x秒(x<5)時,OE=OF=x,

作EH⊥OC于H,AG⊥OC于點G,

∴EH∥AG,

∴△EHO∽△AGO,

,

即: ,

∴EH= x,

∴S△EOF= OFEH= ×x× x= x2,

故A、B選項錯誤;

當(dāng)點F運動到點C時,點E運動到點A,此時點F停止運動,點E在AD上運動,△EOF的面積不變,

點在DC上運動時,如右圖,

EF=11﹣x,OC=5,

∴S△EOF= OCCE= ×(11﹣x)×5=﹣ x+ 是一次函數(shù),故C正確,

故選:C.

首先根據(jù)點D的坐標(biāo)求得點A的坐標(biāo),從而求得線段OA和線段OC的長,然后根據(jù)運動時間即可判斷三角形EOF的面積的變化情況.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的面積法給了小聰以靈感.他驚喜的發(fā)現(xiàn):當(dāng)兩個全等的直角三角形如圖1或圖2擺放時,都可以用面積法來證明.下面是小聰利用圖1證明勾股定理的過程:

(1)將兩個全等的直角三角形按圖1所示擺放,其中∠DAB90°.求證:a2b2c2.

(2)請參照上述證法,利用圖2完成下面的證明.

將兩個全等的直角三角形按圖2所示擺放,其中∠DAB90°.

求證:a2b2c2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ABC=60°,C=45°,ADBC邊上的高,∠ABC的平分線BEAD于點F,則圖中共有等腰三角形( )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AC>AB,AD平分∠BAC,點D到點B與點C的距離相等,過點DDEBC于點E.

(1)求證:BE=CE;

(2)請直接寫出∠ABC,ACB,ADE三者之間的數(shù)量關(guān)系;

(3)若∠ACB=40°,ADE=20°,求∠DCB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰△ABC中,AB=AC,點D在AC邊上,點E在BC邊上,且∠AED=∠B,若AB=10,BE=5,AE=2 ,則線段CE的長為(
A.
B.8
C.2
D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊△ABC中,DAC邊上一點,連接BD,將△BCD繞點B逆時針旋轉(zhuǎn)60°得到△BAE,連接ED,若BC=5BD=4,有下列結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△ADE的周長是9.其中正確的個數(shù)是(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,8×5的正方形網(wǎng)格中,每個小正方形的邊長均為1,ABC的三個頂點均在小正方形的頂點上.

(1)在圖1中畫ABD(D在小正方形的頂點上),使ABD的周長等于ABC的周長,且以A,B,C,D為頂點的四邊形是軸對稱圖形;

(2)在圖2中畫ABE(E在小正方形的頂點上),使ABE的周長等于ABC的周長,且以A,B,C,E為頂點的四邊形是中心對稱圖形,并直接寫出該四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:|1﹣ |+3tan30°﹣( ﹣5)0﹣(﹣ 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖E、F在線段BDAB=CD,∠B=∠D,BF=DE

求證:(1)AE=CF;(2)AFCE

查看答案和解析>>

同步練習(xí)冊答案