【題目】計算:|1﹣ |+3tan30°﹣( ﹣5)0﹣(﹣ 1

【答案】解:原式= ﹣1+3× ﹣1﹣(﹣3)= ﹣1+ +3=2
【解析】先根據(jù)絕對值的意義,特殊銳角的三角函數(shù)值,零指數(shù)及負(fù)指數(shù)的意義分別化簡,再按照有理數(shù)的計算方法進行計算。
【考點精析】根據(jù)題目的已知條件,利用零指數(shù)冪法則和整數(shù)指數(shù)冪的運算性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ABC中,∠BAD=∠EBC,ADBEF.

(1)試說明 : ∠ABC=∠BFD ;

(2)若∠ABC=35°,EGAD,EHBE,求∠HEG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角梯形AOCD的邊OC在x軸上,O為坐標(biāo)原點,CD垂直于x軸,D(5,4),AD=2.若動點E、F同時從點O出發(fā),E點沿折線OA→AD→DC運動,到達C點時停止;F點沿OC運動,到達C點時停止,它們運動的速度都是每秒1個單位長度.設(shè)E運動x秒時,△EOF的面積為y(平方單位),則y關(guān)于x的函數(shù)圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D為BC邊的中點,過點D作DE⊥AB,DF⊥AC,垂足分別為E、F.

(1)求證;DE=DF;

(2)若∠A=90°,圖中與DE相等的還有哪些線段?(不用說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于點OOF,OD分別是∠AOE,∠BOE的平分線.

(1)寫出∠DOE的補角;

(2)若∠BOE62°,求∠AOD和∠EOF的度數(shù);

(3)試問射線ODOF之間有什么特殊的位置關(guān)系?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點D為AB邊上的一點.

(1)求證:△BCD≌△ACE;
(2)若AE=12,DE=15,求AB的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)老師在課上給出了這樣一道題目:如圖(1),等邊△ABC邊長為2,過AB邊上一點P作PE⊥AC于E,Q為BC延長線上一點,且AP=CQ,連接PQ交AC于D,求DE的長.

小明同學(xué)經(jīng)過認(rèn)真思考后認(rèn)為,可以通過過點P作平行線構(gòu)造等邊三角形的方法來解決這個問題.請根據(jù)小明同學(xué)的思路直接寫出DE的長.

(2)(類比探究)

老師引導(dǎo)同學(xué)繼續(xù)研究:

①等邊△ABC邊長為2,當(dāng)P為BA的延長線上一點時,作PE⊥CA的延長線于點E ,Q為邊BC上一點,且AP=CQ,連接PQ交AC于D.請你在圖(2)中補全圖形并求DE的長.

②已知等邊△ABC,當(dāng)P為AB的延長線上一點時,作PE⊥射線AC于點E, Q為哪一個(①BC邊上;②BC的延長線上;③CB的延長線上)一點,且AP=CQ,連接PQ交直線AC于點D,能使得DE的長度保持不變.( 直接寫出答案的編號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2﹣2bx+c,當(dāng)x<2時,y的值隨x的增大而增大,則實數(shù)b的取值范圍是(
A.b≥﹣1
B.b≤﹣1
C.b≥﹣2
D.b≤﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點,,連接,將向下平移5個單位得線段,其中點的對應(yīng)點為點

1)填空:點的坐標(biāo)為_________,線段平移到掃過的面積為_______;

2)若點軸上的動點,連接

①如圖(1),當(dāng)點軸正半軸時,線段與線段相交于點,用等式表示三角形的面積與三角形的面積之間的關(guān)系,并說明理由;

②當(dāng)將四邊形的面積分成兩部分時,求點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案