【題目】如圖,在平面直角坐角系中,點是原點,點、在坐標(biāo)軸上,連接,點軸上,且點是線段的垂直平分線上一點.

1)求點的坐標(biāo);

2)點從點出發(fā)以每秒2個單位長度的速度向終點運動(點不與點重合),連接、,若點的運動時間為秒,的面積為,用含的式子表示

3)在(2)的條件下,過點垂直軸,交,若,求點的坐標(biāo).

【答案】1;(2S=;(3

【解析】

(1)依據(jù)三角形內(nèi)角和定理、線段中垂線的性質(zhì)、等腰三角形等邊對等角,得到,再依據(jù)含30度的直角三角形的性質(zhì)得到,最終建立BCOC的關(guān)系,即可求出OC的長和C的坐標(biāo);

N,由題意得,則,由直角三角形的性質(zhì)得出,由三角形面積公式即可得出答案;

3)先求證,再分點與點重合、點上兩種情況討論,對于第2種情況,先證明,再依據(jù)30度的直角三角形的性質(zhì),得到,再證明,依據(jù)等腰三角形三線合一的性質(zhì)得到,最后得到,即可寫出點的坐標(biāo).

解:(1

是線段的垂直平分線上一點

2,,

過點N,

3軸,

①當(dāng)點與點重合時,

②當(dāng)點上時,連接

,

,

又∵,

,

,

是等邊三角形,

,

,

.

綜上所述:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,BD平分∠ABCAC于點D,過DDEBCAB于點E,若DE剛好平分∠ADB,且AEa,則BC_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,分別在、上,,且,點的中點,延長、相交于點,連接

1)求證:

2)若,,求的周長和的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y1=(k10)與一次函數(shù)y2=k2x+1(k20)相交于A、B兩點,ACx軸于點C,若OAC的面積為1,且tanAOC=2.

(1)求出反比例函數(shù)與一次函數(shù)的解析式;

(2)請直接寫出B點的坐標(biāo),并指出當(dāng)x為何值時,反比例函數(shù)y1的值大于一次函數(shù)y2的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC和△ADE中,∠BAC=∠EAD,ABACADAE,連接CD、AE交于點F

1)求證:BECD

2)當(dāng)∠BAC=∠EAD30°,ADAB時(如圖2),延長DC、AB交于點G,請直接寫出圖中除△ABC、△ADE以外的等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB交雙曲線 A,B兩點,交x軸于點C,且BC= AB,過點BBMx軸于點M,連結(jié)OA,若OM=3MC,SOAC=8,則k的值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八(2)班分成甲、乙兩組進(jìn)行一分鐘投籃測試,并規(guī)定得6分及以上為合格,得9分及以上為優(yōu)秀,現(xiàn)兩組學(xué)生的一次測試成績統(tǒng)計如下表:

成績(分)

4

5

6

7

8

9

甲組人數(shù)(人)

1

2

5

2

1

4

乙組人數(shù)(人)

1

1

4

5

2

2

1)請你根據(jù)上表數(shù)據(jù),把下面的統(tǒng)計表補充完整,并寫出求甲組平均分的過程;

統(tǒng)計量

平均分

方差

眾數(shù)

中位數(shù)

合格率

優(yōu)秀率

甲組

   

2.56

   

6

80.0%

26.7%

乙組

6.8

1.76

7

   

86.7%

13.3%

2)如果從投籃的穩(wěn)定性角度進(jìn)行評價,你認(rèn)為哪組成績更好?并說明理由;

3)小聰認(rèn)為甲組成績好于乙組,請你說出支持小聰觀點的理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y1=x+12+1y2=ax423交于點A13),過點Ax軸的平行線,分別交兩條拋物線于B、C兩點,且D、E分別為頂點.則下列結(jié)論:①a=;AC=AE③△ABD是等腰直角三角形;④當(dāng)x1時,y1y2  其中正確結(jié)論的個數(shù)是( )

A. 1B2C3D4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,在平行四邊形內(nèi)作以線段AD為邊的等邊ADM,連結(jié)AM

1)如圖1,若點M在對角線BD上,且∠ABC=105°AB=,求AM的長;

2)如圖2,點ECD邊上一點,連接ME,點FBM的中點,,若CEME=DE.求證:BMME

查看答案和解析>>

同步練習(xí)冊答案