【題目】如圖,、分別在、上,,且,點(diǎn)的中點(diǎn),延長、相交于點(diǎn),連接

1)求證:

2)若,,求的周長和的長.

【答案】1)見解析;(2)△AMC的周長=+5+8.

【解析】

1)如圖,首先證明DFAEDF=AF=EF,這是解決問題的關(guān)鍵性結(jié)論;運(yùn)用AAS證明△DFC≌△AFM;
2)依次求出FMFC、AC、AMMC,即可的周長;利用面積公式,即可求出的長.

1)證明:∵,且,

∴△ADE是等腰直角三角形,

FAE中點(diǎn),

DFAE,DF=AF=EF;
又∵∠ABC=90°,∠DCF,∠AMF都與∠MAC互余,
∴∠DCF=AMF;

在△DFC與△AFM中,

,

∴△DFC≌△AFMAAS).
2)解:∵∠ADE=90°AD=DE,AF=FE
DF=EF=AF=3

DM=2,

FM= 5,

∵△DFC≌△AFM,

FC= FM=5,

AC=8,

∵∠CFM=90°,

CM=5,AM=,

∴△AMC的周長=+5+8
,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,且AD=12cm.點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度在射線AD上運(yùn)動;同時,點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度在射線CB上運(yùn)動.運(yùn)動時間為t,當(dāng)t=______秒(s)時,點(diǎn)P、Q、C、D構(gòu)成平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在反比例函數(shù)y= 的圖象上有一動點(diǎn)A,連接AO并延長交圖象的另一支于點(diǎn)B,在第二象限內(nèi)有一點(diǎn)C,滿足AC=BC,當(dāng)點(diǎn)A運(yùn)動時,點(diǎn)C始終在函數(shù)y= 的圖象上運(yùn)動,若tanCAB=2,則k的值為(

A. ﹣3 B. ﹣6 C. ﹣9 D. ﹣12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,在中,,點(diǎn)在線段上,點(diǎn)在線段的延長線上.將繞點(diǎn)順時針方向旋轉(zhuǎn)60°得到(點(diǎn)的對應(yīng)點(diǎn)為,點(diǎn)的對應(yīng)點(diǎn)為點(diǎn)),連接、,過點(diǎn),垂足為,直線交線段,則的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)解不等式組

2)分解因式:

3)先化簡,再求值:,其中

4)解分式方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù).

(1)求證:它的圖象與x軸必有兩個不同的交點(diǎn);

(2)這條拋物線與x軸交于兩點(diǎn)A(x1,0),B(x2,O)(x1<x2),y軸交于點(diǎn)C,AB=4,⊙MA,B,C三點(diǎn),求扇形MAC的面積S;

(3)(2)的條件下,拋物線上是否存在點(diǎn)P,PD⊥x軸于D,使△PBD被直線BC分成面積比為1:2的兩部分?若存在,請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A是雙曲線y=(x>0)上的一點(diǎn),連結(jié)OA,在線段OA上取一點(diǎn)B,作BC⊥x軸于點(diǎn)C,以BC的中點(diǎn)為對稱中心,作點(diǎn)O的中心對稱點(diǎn)O′,當(dāng)O′落在這條雙曲線上時,=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐角系中,點(diǎn)是原點(diǎn),點(diǎn)、在坐標(biāo)軸上,連接,,點(diǎn)軸上,且點(diǎn)是線段的垂直平分線上一點(diǎn).

1)求點(diǎn)的坐標(biāo);

2)點(diǎn)從點(diǎn)出發(fā)以每秒2個單位長度的速度向終點(diǎn)運(yùn)動(點(diǎn)不與點(diǎn)重合),連接、,若點(diǎn)的運(yùn)動時間為秒,的面積為,用含的式子表示;

3)在(2)的條件下,過點(diǎn)垂直軸,交,若,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC為弦,∠BAC的平分線交⊙O于點(diǎn)D,過點(diǎn)D的切線交AC的延長線于點(diǎn)G.

求證:(1)DG⊥AG;

(2)AG+CG=AB.

查看答案和解析>>

同步練習(xí)冊答案