【題目】如圖,一次函數(shù)y1=kx+1與二次函數(shù)y2=ax2+bx﹣2交于A,B兩點,且A(1,0)拋物線的對稱軸是x=﹣

(1)ka、b的值;

(2)求不等式kx+1>ax2+bx﹣2的解集.

【答案】(1)k=﹣1,,;(2)﹣6<x<1.

【解析】

(1)首先把A的坐標代入一次函數(shù)解析式即可求得k的值,根據(jù)對稱軸即可得到一個關于ab的式子,然后把A代入二次函數(shù)解析式,解所得到的兩個式子組成的方程組即可求得ab的值;

(2)解一次函數(shù)解析式和二次函數(shù)解析式組成的方程組,求得B的坐標,然后根據(jù)圖象求解.

(1)A(1,0)代入一次函數(shù)解析式得:k+1=0,解得:k=﹣1,

根據(jù)題意得:,

解得:;

(2)解方程組,

解得:

則點B的坐標是(﹣6,7).

根據(jù)圖象可得不等式kx+1>ax2+bx﹣2的解集是:﹣6<x<1.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=x2﹣x﹣6的圖象如圖所示.

(1)求拋物線與x軸、y軸的交點坐標;

(2)根據(jù)圖象回答:當x取何值時,y>0?當x取何值時,y<0?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下列語句中,敘述正確的個數(shù)為( 。

相等的圓周角所對弧相等;

同圓等圓中,同弦或等弦所對圓周角相等;

平分弦的直徑垂直于弦;

等弧所對圓周角相等;

圓的內(nèi)接平行四邊形是矩形;

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC內(nèi)接于半圓,AB是直徑,過A作直線MN,若∠MAC=ABC.

(1)求證:MN是半圓的切線;

(2)設D是弧AC的中點,連結BDAC G,過DDEABE,交ACF.求證:FD=FG.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x1、x2是一元二次方程2x2-2x+m+1=0的兩個實根.

(1)求實數(shù)m的取值范圍;

(2)如果m滿足不等式7+4x1x2>x12+x22,且m為整數(shù).求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2﹣2x+m+1x軸交于A(x1 , 0)、B(x2 , 0)兩點,且x1<0,x2>0,與y軸交于點C,頂點為P.(提示:若x1 , x2是一元二次方程ax2+bx+c=0(a≠0)的兩個實根,則x1+x2=﹣ ,x1x2=

(1)m的取值范圍;

(2)OA=3OB,求拋物線的解析式;

(3)(2)中拋物線的對稱軸PD上,存在點Q使得△BQC的周長最短,試求出點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=BC,CD⊥AB于點D,CD=BD,BE平分∠ABC,點H是BC邊的中點,連接DH,交BE于點G.

(1)求證:△ADC≌△FDB;

(2)求證:CE=BF;

(3)連結CG,判斷△ECG的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在寬20米,長32米的矩形耕地上,修筑同樣寬的三條路(兩條縱向,一條橫向,并且橫向與縱向互相垂直),把這塊耕地分成大小相等的六塊試驗田,要使試驗田的面積是570平方米,問道路應該多寬?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點 A 是反比例函數(shù) y 在第一象限圖象上的一個動點,連接 OA,以OA 為長,OA為寬作矩形 AOCB,且點 C 在第四象限,隨著點 A 的運動,點 C 也隨之運動,但點 C 始終在反比例函數(shù) y 的圖象上,則 k 的值為________.

查看答案和解析>>

同步練習冊答案