【題目】已知x1、x2是一元二次方程2x2-2x+m+1=0的兩個(gè)實(shí)根.
(1)求實(shí)數(shù)m的取值范圍;
(2)如果m滿足不等式7+4x1x2>x12+x22,且m為整數(shù).求m的值.
【答案】(1)m≤-;(2)整數(shù)m的值為-2,-1.
【解析】試題分析:(1)根據(jù)判別式的意義得到△=(-2)2-4×2×(m+1)≥0,然后解不等式即可;
(2)根據(jù)根與系數(shù)的關(guān)系得到x1+x2=1,x1x2=,再變形已知條件得到7+4x1x2>(x1+x2)2-2x1x2,于是有7+6×>1,解得m>-3,所以m的取值范圍為-3<m≤-,然后找出此范圍內(nèi)的整數(shù)即可.
試題解析:(1)根據(jù)題意得△=(-2)2-4×2×(m+1)≥0,
解得m≤-;
(2)根據(jù)題意得x1+x2=1,x1x2=,
∵7+4x1x2>x12+x22,
∴7+4x1x2>(x1+x2)2-2x1x2,
即7+6x1x2>(x1+x2)2,
∴7+6×>1,解得m>-3,
∴-3<m≤-,
∴整數(shù)m的值為-2,-1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中不正確的是( 。
A.線段有1條對(duì)稱軸
B.等邊三角形有3條對(duì)稱軸
C.角只有1條對(duì)稱軸
D.底與腰不相等的等腰三角形只有一條對(duì)稱軸
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店原來將進(jìn)貨價(jià)為8元的商品按10元售出,每天可銷售200件.現(xiàn)在采用提高售價(jià),減少進(jìn)貨量的方法來增加利潤,已知每件商品漲價(jià)1元,每天的銷售量就減少20件.設(shè)這種商品每個(gè)漲價(jià)元.
(1)填空:原來每件商品的利潤是 元,漲價(jià)后每件商品的實(shí)際利潤是 元 (可用含的代數(shù)式表示);
(2)為了使每天獲得700元的利潤,售價(jià)應(yīng)定為多少元?
(3)售價(jià)定為多少元時(shí),每天利潤最大,最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的文字,解答問題.
大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,但是由于1<<2,所以的整數(shù)部分為1,將減去其整數(shù)部分1,差就是小數(shù)部分-1,根據(jù)以上的內(nèi)容,解答下面的問題:
(1)的整數(shù)部分是 ,小數(shù)部分是 ;
(2)1+的整數(shù)部分是 ,小數(shù)部分是 ;
(3)若設(shè)2+整數(shù)部分是x,小數(shù)部分是y,求x-y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A、點(diǎn)B的坐標(biāo)分別為(4,0)、(0,3).
(1)求AB的長度.
(2)如圖2,若以AB為邊在第一象限內(nèi)作正方形ABCD,求點(diǎn)C的坐標(biāo).
(3)在x軸上是否存一點(diǎn)P,使得⊿ABP是等腰三角形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題8分)如圖,在等邊△ABC中,點(diǎn)D,E分別在邊BC,AB上,BD=AE,AD與CE交于點(diǎn)F.
(1)求證:AD=CE;
(2)求∠DFC的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com