【題目】已知二次函數(shù)y12x2-4x和一次函數(shù)y2-2x,規(guī)定:當(dāng)x任取一個(gè)值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2,若y1≠y2,取y1y2中的較大值為M;若y1y2,則My1y2.下列說(shuō)法錯(cuò)誤的是 ( )

A.當(dāng)x2時(shí),My1B.當(dāng)x0時(shí),Mx的增大而減小

C.M的最小值為-2D.M-1時(shí),則

【答案】D

【解析】

通過(guò)解方程2x2-4x=-2x得兩函數(shù)圖象的交點(diǎn)坐標(biāo)為(0,0),(1-2),利用新定義和函數(shù)圖象逐項(xiàng)判斷即可.

二次函數(shù)y12x2-4x和一次函數(shù)y2-2x的圖像如圖所示:

解方程2x24x=2x,解得x1=0x2=1,兩函數(shù)圖象的交點(diǎn)坐標(biāo)為(0,0),(1,2),

當(dāng)x>2時(shí),M=y1,所以A選項(xiàng)說(shuō)法正確;

當(dāng)x<0時(shí),M=y1,Mx的增大而減小,所以B選項(xiàng)說(shuō)法正確;

當(dāng)x0,M的最小值為0;當(dāng)0<x1時(shí),M的最小值為2;當(dāng)x1時(shí),M的最小值為2,所以M的最小值為2,所以C選項(xiàng)說(shuō)法正確;

當(dāng)M=1時(shí),0<x<1,則2x=1,解得;若x>1,則2x24x=1, ,所以D選項(xiàng)說(shuō)法錯(cuò)誤.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年的淘寶雙十一,開(kāi)場(chǎng)11秒后,銷(xiāo)售額突破十億,3分鐘破百億,最終成交額定格在1682億元上,在今年的雙十一前夕,某企業(yè)生產(chǎn)一種必需商品作為雙十一的主打商品,經(jīng)過(guò)之前的長(zhǎng)期市場(chǎng)調(diào)查后發(fā)現(xiàn),商品的月總產(chǎn)量穩(wěn)定在600件,商品的月銷(xiāo)售量a(件)由固定銷(xiāo)售量與浮動(dòng)銷(xiāo)售量?jī)蓚(gè)部分組成,其中固定銷(xiāo)售量保持不變,浮動(dòng)銷(xiāo)售量與售價(jià)x(元/件)(x≤10)成反比,且得到了如下表格中的信息:

售價(jià)x(元/件)

5

8

月銷(xiāo)售量Q(件)

580

400

1)求Q關(guān)于x的函數(shù)關(guān)系式;

2)若生產(chǎn)的所有商品正好銷(xiāo)售完,求售價(jià)x;

3)求售價(jià)x為多少時(shí),月銷(xiāo)售額最大,并求這個(gè)最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AP、B、C是⊙O上的四個(gè)點(diǎn),∠APC=∠CPB60°.

1)求證:PA+PBPC;

2)若BC,點(diǎn)P是劣弧AB上一動(dòng)點(diǎn)(異于A、B),PA、PB是關(guān)于x的一元二次方程x2mx+n0的兩根,求m的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形中,,對(duì)角線,相交于點(diǎn),點(diǎn),分別從兩點(diǎn)同時(shí)出發(fā),以的速度沿運(yùn)動(dòng),到點(diǎn),時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為,的面積為,則的函數(shù)關(guān)系可用圖象表示為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個(gè)動(dòng)點(diǎn)(F不與A,B重合),過(guò)點(diǎn)F的反比例函數(shù)y= (x>0)的圖象與BC邊交于點(diǎn)E.

(1)當(dāng)F為AB的中點(diǎn)時(shí),求該函數(shù)的解析式;

(2)當(dāng)k為何值時(shí),△EFA的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分類(lèi)討論在數(shù)學(xué)中既是一個(gè)重要的策略思想又是一個(gè)重要的數(shù)學(xué)方法.例如對(duì)于像x2+|x|-60這樣含有絕對(duì)值符號(hào)的方程,可采用如下的分類(lèi)討論方法:

解:當(dāng)x≥0時(shí),原方程可化為x2+x-60.

解得:x1-3,x22.

x≥0,∴x2.

當(dāng)x0時(shí),原方程可化為x2-x-60,

解得:x13x2-2.

x0,∴x-2.

綜上可得:原方程的解為x1-2x22.

仿照上面的解法,解方程:x2+|2x-1|-40.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖像與軸交于兩點(diǎn),與軸交于點(diǎn),其頂點(diǎn)為,連接,過(guò)點(diǎn)軸的垂線.

1)求點(diǎn)的坐標(biāo);

2)直線上是否存在點(diǎn),使的面積等于的面積的3倍?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+(a>0,b<0)的圖象與x軸只有一個(gè)公共點(diǎn)A

(1)當(dāng)a=時(shí),求點(diǎn)A的坐標(biāo);

(2)過(guò)點(diǎn)A的直線y=x+k與二次函數(shù)的圖象相交于另一點(diǎn)B,當(dāng)b≥﹣1時(shí),求點(diǎn)B的橫坐標(biāo)m的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一場(chǎng)籃球比賽中,一名球員在關(guān)鍵時(shí)刻投出一球,已知球出手時(shí)離地面高2米,與籃圈中心的水平距離為7米,當(dāng)球出手后水平距離為4米時(shí)到達(dá)最大高度4米,已知籃球運(yùn)行的軌跡為拋物線,籃圈中心距離地面3.19米.

1)以地面為x軸,籃球出手時(shí)垂直地面所在直線為y軸建立平面直角坐標(biāo)系,求籃球運(yùn)行的拋物線軌跡的解析式;

2)通過(guò)計(jì)算,判斷這個(gè)球員能否投中?

查看答案和解析>>

同步練習(xí)冊(cè)答案