【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn),若點(diǎn)的坐標(biāo)為(其中k為常數(shù),且),則稱點(diǎn)為點(diǎn)P的“k屬派生點(diǎn)”.
例如:的“4屬派生點(diǎn)”為,即.
(1)點(diǎn)的“2屬派生點(diǎn)”的坐標(biāo)為________;
(2)若點(diǎn)P的“3屬派生點(diǎn)”的坐標(biāo)為,求點(diǎn)P的坐標(biāo);
(3)若點(diǎn)P在y軸的正半軸上,點(diǎn)P的“k屬派生點(diǎn)”為點(diǎn),且點(diǎn)到y軸的距離不小于線段OP長(zhǎng)度的5倍,則k的取值范圍是________________.
【答案】(1);(2);(3)或
【解析】
(1)根據(jù)“k屬派生點(diǎn)”的概念計(jì)算;
(2)設(shè)點(diǎn)P的坐標(biāo)為(x,y),根據(jù)“k屬派生點(diǎn)”的概念列出方程組,解方程組得到答案;
(3)設(shè)點(diǎn)P的坐標(biāo)為(0,b),根據(jù)“k屬派生點(diǎn)”的概念求出P′點(diǎn)的坐標(biāo),根據(jù)題意列出不等式,解不等式得到答案.
(1)(1)點(diǎn)P(-2,3)的“2屬派生點(diǎn)”P(pán)′的坐標(biāo)為(-2+2×3,3-2×2),即(4,-1),
故答案為:(4,-1);
(2)設(shè)P點(diǎn)為 根據(jù)題意
解得
則點(diǎn)P的坐標(biāo)為
(3)設(shè)點(diǎn)P的坐標(biāo)為(0,b),
則點(diǎn)P的“k屬派生點(diǎn)”P(pán)′點(diǎn)的坐標(biāo)為(kb,b),
由題意得,|kb|≥5b,
當(dāng)k>0時(shí),k≥5,
當(dāng)k<0時(shí),k≤-5,
則k的取值范圍是k≥5或k≤-5,
故答案為: 或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D、E分別在AB、AC上,BE與CD相交于點(diǎn)O,已知∠B=∠C,現(xiàn)添加下面的哪一個(gè)條件后,仍不能判定△ABE≌△ACD( 。
A. AD=AEB. AB=AC
C. BE=CDD. ∠AEB=∠ADC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某市城區(qū)地圖(比例尺1∶9000)上,新安大街的圖上長(zhǎng)度與光華大街的圖上長(zhǎng)度分別是16 cm,10 cm.
(1)新安大街與光華大街的實(shí)際長(zhǎng)度各是多少米?
(2)新安大街與光華大街的圖上長(zhǎng)度之比是多少?它們的實(shí)際長(zhǎng)度之比呢?你發(fā)現(xiàn)了什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(a,3),點(diǎn)C(5,c),點(diǎn)B的縱坐標(biāo)為6且橫縱坐標(biāo)互為相反數(shù),直線AC軸,直線CB軸:
(1)寫(xiě)出A、B、C三點(diǎn)坐標(biāo);
(2)求△ABC的面積;
(3)若P為線段OB上動(dòng)點(diǎn)且點(diǎn)P的橫、縱坐標(biāo)互為相反數(shù),當(dāng)△BCP的面積大于12小于16時(shí),求點(diǎn)P橫坐標(biāo)取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了更好地開(kāi)展“陽(yáng)光體育一小時(shí)”活動(dòng),對(duì)本校學(xué)生進(jìn)行了“寫(xiě)出你最喜歡的體育活動(dòng)項(xiàng)目(只寫(xiě)一項(xiàng))”的隨機(jī)抽樣調(diào)查,下面是根據(jù)得到的相關(guān)數(shù)據(jù)繪制的統(tǒng)計(jì)圖的一部分.
抽樣調(diào)查學(xué)生最喜歡的運(yùn)動(dòng)項(xiàng)目的人數(shù)統(tǒng)計(jì)圖 各運(yùn)動(dòng)項(xiàng)目的喜歡人數(shù)占抽樣總?cè)藬?shù)百分比統(tǒng)計(jì)圖
請(qǐng)根據(jù)以上信息解答下列問(wèn)題:
(1)該校對(duì)________名學(xué)生進(jìn)行了抽樣調(diào)查;
(2)請(qǐng)將圖1和圖2補(bǔ)充完整;
(3)圖2中跳繩所在的扇形對(duì)應(yīng)的圓心角的度數(shù)是________;
(4)若該校共有2400名同學(xué),請(qǐng)利用樣本數(shù)據(jù)估計(jì)全校學(xué)生中最喜歡跳繩運(yùn)動(dòng)的人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線,點(diǎn)B在直線MN上,點(diǎn)A為直線PQ上一動(dòng)點(diǎn),連接AB.在直線AB的上方做,使,設(shè),的平分線所在直線交PQ于點(diǎn)D.
(1)如圖1,若,且點(diǎn)C恰好落在直線MN上,則________;
(2)如圖2,若,且點(diǎn)C在直線MN右側(cè),求的度數(shù);
(3)若點(diǎn)C在直線MN的左側(cè),求的度數(shù).(用含有α的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面直角坐標(biāo)系內(nèi)兩點(diǎn)A、B,點(diǎn),點(diǎn)B與點(diǎn)A關(guān)于y軸對(duì)稱.
(1)則點(diǎn)B的坐標(biāo)為________;
(2)動(dòng)點(diǎn)P、Q分別從A點(diǎn)、B點(diǎn)同時(shí)出發(fā),沿直線AB向右運(yùn)動(dòng),同向而行,點(diǎn)P的速度是每秒4個(gè)單位長(zhǎng)度,點(diǎn)Q的速度是每秒2個(gè)單位長(zhǎng)度,設(shè)P、Q的運(yùn)動(dòng)時(shí)間為t秒,用含t的代數(shù)式表示的面積S,并寫(xiě)出t的取值范圍;
(3)在平面直角坐標(biāo)系中存在一點(diǎn),滿足.求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB∥CD,EF交AB于E,交CD于F,∠AEF=68°,FG平分∠EFD,KF⊥FG,求∠KFC的度數(shù).
解:∵AB∥CD(已知)
∴∠EFD=∠AEF( )
∵∠AEF=68°(已知)
∴∠EFD=∠AEF=68°( )
∵FG平分∠EFD(已知)
所以∠EFG=∠GFD=∠EFD=34°( )
又因?yàn)?/span>KF⊥FG( )
所以∠KFG=90°( )
所以∠KFC=180°-∠GFD-∠KFG= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E是AD上一點(diǎn),PQ垂直平分BE,分別交AD,BE,BC于點(diǎn)P,O,Q,連接BP,EQ.
(1)求證:四邊形BPEQ是菱形;
(2)F為AB的中點(diǎn),則線段OF與線段AE有什么位置關(guān)系和數(shù)量關(guān)系,并說(shuō)明理由;
(3)在(2)的條件下,若AB=6,OF=4,求PQ的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com