【題目】如圖,在矩形ABCD中,E是AD上一點(diǎn),PQ垂直平分BE,分別交AD,BE,BC于點(diǎn)P,O,Q,連接BP,EQ.
(1)求證:四邊形BPEQ是菱形;
(2)F為AB的中點(diǎn),則線段OF與線段AE有什么位置關(guān)系和數(shù)量關(guān)系,并說(shuō)明理由;
(3)在(2)的條件下,若AB=6,OF=4,求PQ的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)PQ=.
【解析】
(1)先根據(jù)線段垂直平分線的性質(zhì)證明QB=QE,由ASA證明△BOQ≌△EOP,得出PE=QB,證出四邊形BPEQ是平行四邊形,再根據(jù)菱形的判定即可得出結(jié)論;
(2)根據(jù)中位線定理即可求出線段OF與線段AE的位置關(guān)系和數(shù)量關(guān)系.
(3)根據(jù)勾股定理求出OB的長(zhǎng)度,進(jìn)而求出BE, 設(shè)菱形的邊長(zhǎng)為x,則AP=8﹣x.
在Rt△APB中,根據(jù)勾股定理列出方程,求出邊長(zhǎng),根據(jù)菱形的面積公式進(jìn)行求解即可.
(1)證明:∵PQ垂直平分BE,
∴PB=PE,OB=OE,
∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠PEO=∠QBO,
在△BOQ與△EOP中,∠PEO=∠QBO,OB=OE,∠POE=∠QOB,
∴△BOQ≌△EOP(ASA),
∴PE=QB,
又∵AD∥BC,
∴四邊形BPEQ是平行四邊形,
又∵QB=QE,
∴四邊形BPEQ是菱形;
(2)∵四邊形BPEQ是菱形,
∴OB=OE.
又∵F是AB的中點(diǎn),
∴OF是△BAE的中位線,
∴AE∥OF且OF=AE.
(3)∵AB=6,F是AB的中點(diǎn),
∴BF=3.
∵OF∥AE,
∴∠BFO=90°.
在Rt△FOB中,
∴BE=10.
設(shè)菱形的邊長(zhǎng)為x,則AP=8﹣x.
在Rt△APB中,BP2=AB2+AP2,即x2=62+(8﹣x)2,解得:x=.
由菱形的面積公式可知: 解得:PQ
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn),若點(diǎn)的坐標(biāo)為(其中k為常數(shù),且),則稱點(diǎn)為點(diǎn)P的“k屬派生點(diǎn)”.
例如:的“4屬派生點(diǎn)”為,即.
(1)點(diǎn)的“2屬派生點(diǎn)”的坐標(biāo)為________;
(2)若點(diǎn)P的“3屬派生點(diǎn)”的坐標(biāo)為,求點(diǎn)P的坐標(biāo);
(3)若點(diǎn)P在y軸的正半軸上,點(diǎn)P的“k屬派生點(diǎn)”為點(diǎn),且點(diǎn)到y軸的距離不小于線段OP長(zhǎng)度的5倍,則k的取值范圍是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,己知點(diǎn),,是x軸上的一個(gè)動(dòng)點(diǎn),當(dāng)時(shí),點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)?jiān)诰W(wǎng)格坐標(biāo)系中畫出二次函數(shù)的大致圖象(注:圖中小正方形網(wǎng)格的邊長(zhǎng)為),根據(jù)圖象填空:
()當(dāng)__________時(shí),有最__________值__________.
()隨的增大而減小的自變量的取值范圍是__________.
()結(jié)合圖象直接寫出時(shí)的范圍:__________.
()結(jié)合圖象直接寫出時(shí)的取值范圍:__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖像與軸交于、兩點(diǎn),與軸交于點(diǎn),點(diǎn)是拋物線頂點(diǎn),點(diǎn)是直線下方的拋物線上一動(dòng)點(diǎn).
()這個(gè)二次函數(shù)的表達(dá)式為____________.
()設(shè)直線的解析式為,則不等式的解集為___________.
()連結(jié)、,并把沿翻折,得到四邊形,那么是否存在點(diǎn),使四邊形為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
()當(dāng)四邊形的面積最大時(shí),求出此時(shí)點(diǎn)的坐標(biāo)和四邊形的最大面積.
()若把條件“點(diǎn)是直線下方的拋物線上一動(dòng)點(diǎn).”改為“點(diǎn)是拋物線上的任一動(dòng)點(diǎn)”,其它條件不變,當(dāng)以、、、為頂點(diǎn)的四邊形為梯形時(shí),直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過(guò)A點(diǎn)作BC的平行線交CE的延長(zhǎng)線于點(diǎn)F,且,連接BF.
證明:;
當(dāng)滿足什么條件時(shí),四邊形AFBD是矩形?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上、兩點(diǎn)對(duì)應(yīng)的有理數(shù)分別為和,點(diǎn)和點(diǎn)分別同時(shí)從點(diǎn)和點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度,每秒個(gè)單位長(zhǎng)度的速度向數(shù)軸正方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒.
(1)當(dāng)時(shí),則、兩點(diǎn)對(duì)應(yīng)的有理數(shù)分別是______;_______;
(2)點(diǎn)是數(shù)軸上點(diǎn)左側(cè)一點(diǎn),其對(duì)應(yīng)的數(shù)是,且,求的值;
(3)在點(diǎn)和點(diǎn)出發(fā)的同時(shí),點(diǎn)以每秒個(gè)單位長(zhǎng)度的速度從點(diǎn)出發(fā),開(kāi)始向左運(yùn)動(dòng),遇到點(diǎn)后立即返回向右運(yùn)動(dòng),遇到點(diǎn)后立即返回向左運(yùn)動(dòng),與點(diǎn)相遇后再立即返回,如此往返,直到、兩點(diǎn)相遇時(shí),點(diǎn)停止運(yùn)動(dòng),求點(diǎn)運(yùn)動(dòng)的路程一共是多少個(gè)單位長(zhǎng)度?點(diǎn)停止的位置所對(duì)應(yīng)的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】尺規(guī)作圖:某學(xué)校正在進(jìn)行校園環(huán)境的改造工程設(shè)計(jì),準(zhǔn)備在校內(nèi)一塊四邊形花壇內(nèi)栽上一棵桂花樹(shù).如圖,要求桂花樹(shù)的位置(視為點(diǎn)P),到花壇的兩邊AB、BC的距離相等,并且點(diǎn)P到點(diǎn)A、D的距離也相等.請(qǐng)用尺規(guī)作圖作出栽種桂花樹(shù)的位置點(diǎn)P(不寫作法,保留作圖痕跡).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com