【題目】已知直線l與⊙O,AB是⊙O的直徑,AD⊥l于點(diǎn)D.
(1)如圖①,當(dāng)直線l與⊙O相切于點(diǎn)C時,若∠DAC=30°,求∠BAC的大;
(2)如圖②,當(dāng)直線l與⊙O相交于點(diǎn)E、F時,若∠DAE=18°,求∠BAF的大。
【答案】解:(1)如圖①,連接OC,
∵直線l與⊙O相切于點(diǎn)C,∴OC⊥l。
∵AD⊥l,∴OC∥AD。
∴∠OCA=∠DAC。
∵OA=OC,∴∠BAC=∠OCA。
∴∠BAC=∠DAC=30°。
(2)如圖②,連接BF,
∵AB是⊙O的直徑,∴∠AFB=90°。
∴∠BAF=90°-∠B。
∴∠AEF=∠ADE+∠DAE=90°+18°=108°。
在⊙O中,四邊形ABFE是圓的內(nèi)接四邊形,
∴∠AEF+∠B=180°。∴∠B=180°-108°=72°。
∴∠BAF=90°-∠B=180°-72°=18°。
【解析】
試題(1)如圖①,首先連接OC,根據(jù)當(dāng)直線l與⊙O相切于點(diǎn)C,AD⊥l于點(diǎn)D.易證得OC∥AD,繼而可求得∠BAC=∠DAC=30°。
(2)如圖②,連接BF,由AB是⊙O的直徑,根據(jù)直徑所對的圓周角是直角,可得∠AFB=90°,由三角形外角的性質(zhì),可求得∠AEF的度數(shù),又由圓的內(nèi)接四邊形的性質(zhì),求得∠B的度數(shù),繼而求得答案。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某電腦公司現(xiàn)有A,B,C三種型號的甲品牌電腦和D,E兩種型號的乙品牌電腦.希望中學(xué)要從甲、乙兩種品牌電腦中各選購一種型號的電腦.
(1)寫出所有選購方案(利用樹狀圖或列表方法表示);
(2)如果(1)中各種選購方案被選中的可能性相同,那么A型號電腦被選中的概率是多少?
(3)現(xiàn)知希望中學(xué)用10萬元購買甲、乙兩種品牌電腦共36臺(價格如圖所示),其中甲品牌電腦為A型號電腦,求購買的A型號電腦有多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,科技小組準(zhǔn)備用材料圍建一個面積為60m2的矩形科技園ABCD,其中一邊AB靠墻,墻長為12m。設(shè)AD的長為xm,DC的長為ym。
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若圍成矩形科技園ABCD的三邊材料總長不超過26m,材料AD和DC的長都是整米數(shù),求出滿足條件的所有圍建方案。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是正方形ABCD中CD邊上任意一點(diǎn),AB=4,以點(diǎn)A為中心,把△ADE順時針旋轉(zhuǎn)90°得到△AD′F
(1)畫出旋轉(zhuǎn)后的圖形,求證:點(diǎn)C、B、F三點(diǎn)共線;
(2)AG平分∠EAF交BC于點(diǎn)G.
①如圖2,連接EF.若BG:CE=5:6,求△AEF的面積;
②如圖3,若BM、DN分別為正方形的兩個外角角平分線,交AG、AE的延長線于點(diǎn)M、N.當(dāng)MM∥DC時,直接寫出DN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年5月,某大型商業(yè)集團(tuán)隨機(jī)抽取所屬的m家商業(yè)連鎖店進(jìn)行評估,將各連鎖店按照評估成績分成了A、B、C、D四個等級,繪制了如圖尚不完整的統(tǒng)計圖表.
評估成績n(分) | 評定等級 | 頻數(shù) |
90≤n≤100 | A | 2 |
80≤n<90 | B | |
70≤n<80 | C | 15 |
n<70 | D | 6 |
根據(jù)以上信息解答下列問題:
(1)求m的值;
(2)在扇形統(tǒng)計圖中,求B等級所在扇形的圓心角的大;(結(jié)果用度、分、秒表示)
(3)從評估成績不少于80分的連鎖店中任選2家介紹營銷經(jīng)驗,求其中至少有一家是A等級的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一幢樓房AB背后有一臺階CD,臺階每層高0.2米,且AC=14.5米,NF=0.2米.設(shè)太陽光線與水平地面的夾角為α,當(dāng)α=56.3°時,測得樓房在地面上的影長AE=10米,現(xiàn)有一只小貓睡在臺階的NF這層上曬太陽.
(1)求樓房的高度約為多少米?
(2)過了一會兒,當(dāng)α=45°時,問小貓能否還曬到太陽?請說明理由.(參考數(shù)據(jù):sin56.3°≈0.83,cos56.3°≈0.55,tan56.3°≈1.5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,﹣3),點(diǎn)P是直線BC下方拋物線上的任意一點(diǎn).
(1)求這個二次函數(shù)y=x2+bx+c的解析式.
(2)連接PO,PC,并將△POC沿y軸對折,得到四邊形POP′C,如果四邊形POP′C為菱形,求點(diǎn)P的坐標(biāo).
(3)如果點(diǎn)P在運(yùn)動過程中,能使得以P、C、B為頂點(diǎn)的三角形與△AOC相似,請求出此時點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:如圖①,在ABCD中,E為BC的中點(diǎn),AE與BD相交于點(diǎn)M.求證:.
應(yīng)用:如圖②,在四邊形ABCD中,AB∥CD,AB=2CD,點(diǎn)E、F分別為AB、BC的中點(diǎn),EF與BD相交于點(diǎn)M,連結(jié)AC.若ME=3,則AC的長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com