【題目】問(wèn)題情境:如圖1,AB∥CD, ,.求度數(shù).
小明的思路是:如圖2,過(guò)P作PE∥AB,通過(guò)平行線性質(zhì),可得 _______.
問(wèn)題遷移:如圖3,AD∥BC,點(diǎn)P在射線OM上運(yùn)動(dòng), , .
(1)當(dāng)點(diǎn)P在A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí), 、、之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.
(2)如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請(qǐng)你直接寫出、、之間的數(shù)量關(guān)系.
【答案】;
(1),理由見解析;
(2)當(dāng)點(diǎn)P在B、O兩點(diǎn)之間時(shí), ;
當(dāng)點(diǎn)P在射線AM上時(shí), .
【解析】試題分析:(1)過(guò)P作PE∥AB,通過(guò)平行線性質(zhì)求∠APC即可;(2)過(guò)P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(3)畫出圖形,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案.
試題解析:(1)過(guò)點(diǎn)P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠A+∠APE=180°,∠C+∠CPE=180°,
∵∠PAB=130°,∠PCD=120°,
∴∠APE=50°,∠CPE=60°,
∴∠APC=∠APE+∠CPE=110°.
故答案為110°.
(1)過(guò)P作PQ∥AD.
∵AD∥BC,
∴AD∥PQ ,
PQ∥BC
∵PQ∥AD,
∴
同理,
∴
(2)(3)當(dāng)P在BA延長(zhǎng)線時(shí),
∠CPD=∠β∠α;
當(dāng)P在AB延長(zhǎng)線時(shí),
∠CPD=∠α∠β.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,△A'B'C是由△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)所得,連接AB',且點(diǎn)A,B',A'在同一條直線上,則AA'的長(zhǎng)為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如圖(1),根據(jù)勾股定理,則a2+b2=c2,若△ABC不是直角三角形,如圖(2)和圖(3),請(qǐng)你類比勾股定理,試猜想a2+b2與c2的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小亮早晨從家騎車到學(xué)校,先上坡后下坡,所行路程y(米)與時(shí)間x(分鐘)的關(guān)系如圖所示,若返回時(shí)上坡、下坡的速度仍與去時(shí)上、下坡的速度分別相同,則小明從學(xué)校騎車回家用的時(shí)間是________分鐘.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,定點(diǎn)A(﹣2,0),動(dòng)點(diǎn)B在直線y=x上運(yùn)動(dòng),當(dāng)線段AB最短時(shí),點(diǎn)B的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D,E,F分別是AB,BC,CA的中點(diǎn),AH是邊BC上的高.
(1)試判斷線段DE與FH之間的數(shù)量關(guān)系,并說(shuō)明理由;
(2)求證:∠DHF=∠DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠1+∠2=180°,∠3=∠B,試說(shuō)明DE∥BC.下面是部分推導(dǎo)過(guò)程,請(qǐng)你在括號(hào)內(nèi)填上推導(dǎo)依據(jù)或內(nèi)容:
證明:∵∠1+∠2=180°(已知)
∠1=∠4 ( )
∴∠2+∠4=180°(等量代換)
∵EH∥AB( )
∴∠B= ( )
∵∠3=∠B(已知)
∴∠3=∠EHC(等量代換)
∴DE∥BC ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年中考前,張老師為了解全市初三男生體育考試項(xiàng)目的選擇情況(每人限選一項(xiàng)),在全市范圍內(nèi)隨機(jī)調(diào)查了部分初三男生,將調(diào)查結(jié)果分成五類:A.推實(shí)心球(2kg);B.立定跳遠(yuǎn);C.半場(chǎng)運(yùn)球;D.跳繩;E.其他,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)假定全市初三畢業(yè)學(xué)生中有32000名男生,試估計(jì)全市初三男生中選半場(chǎng)運(yùn)球的人數(shù)有多少人;
(3)甲、乙兩名初三男生在上述選擇率較高的三個(gè)項(xiàng)目:B.立定跳遠(yuǎn);C.半場(chǎng)運(yùn)球;D.跳繩中各選一項(xiàng),同時(shí)選擇半場(chǎng)運(yùn)球、立定跳遠(yuǎn)的概率是多少?請(qǐng)用列表法或畫樹形圖的方法加以說(shuō)明并列出所有等可能的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】鄰邊不相等的平行四邊形紙片,剪去一個(gè)菱形,余下的一個(gè)四邊形,稱為第一次操作;在余下的四邊形紙片中再剪去一個(gè)菱形,又余下一個(gè)四邊形,稱為第二次操作;…依此類推,若第n次操作余下的四邊形是菱形,則稱原平行四邊形為n階準(zhǔn)菱形,如圖1,ABCD中,若AB=1,BC=2,則ABCD為1階準(zhǔn)菱形.
(1)猜想與計(jì)算:
鄰邊長(zhǎng)分別為3和5的平行四邊形是階準(zhǔn)菱形;已知ABCD的鄰邊長(zhǎng)分別為a,b(a>b),滿足a=8b+r,b=5r,請(qǐng)寫出ABCD是階準(zhǔn)菱形.
(2)操作與推理:
小明為了剪去一個(gè)菱形,進(jìn)行了如下操作:如圖2,把ABCD沿BE折疊(點(diǎn)E在AD上),使點(diǎn)A落在BC邊上的點(diǎn)F處,得到四邊形ABFE.請(qǐng)證明四邊形ABFE是菱形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com