【題目】鄰邊不相等的平行四邊形紙片,剪去一個菱形,余下的一個四邊形,稱為第一次操作;在余下的四邊形紙片中再剪去一個菱形,又余下一個四邊形,稱為第二次操作;…依此類推,若第n次操作余下的四邊形是菱形,則稱原平行四邊形為n階準菱形,如圖1,ABCD中,若AB=1,BC=2,則ABCD為1階準菱形.
(1)猜想與計算:
鄰邊長分別為3和5的平行四邊形是階準菱形;已知ABCD的鄰邊長分別為a,b(a>b),滿足a=8b+r,b=5r,請寫出ABCD是階準菱形.
(2)操作與推理:
小明為了剪去一個菱形,進行了如下操作:如圖2,把ABCD沿BE折疊(點E在AD上),使點A落在BC邊上的點F處,得到四邊形ABFE.請證明四邊形ABFE是菱形.
【答案】
(1)3;12
(2)
解:由折疊知:∠ABE=∠FBE,AB=BF,
∵四邊形ABCD是平行四邊形,
∴AE∥BF,
∴∠AEB=∠FBE,
∴∠AEB=∠ABE,
∴AE=AB,
∴AE=BF,
∴四邊形ABFE是平行四邊形,
∴四邊形ABFE是菱形
【解析】解:(1)如圖1,
利用鄰邊長分別為3和5的平行四邊形進行3次操作,所剩四邊形是邊長為1的菱形,
故鄰邊長分別為3和5的平行四邊形是3階準菱形:
如圖2,
∵b=5r,
∴a=8b+r=40r+r=8×5r+r,
利用鄰邊長分別為41r和5r的平行四邊形進行8+4=12次操作,所剩四邊形是邊長為1的菱形,
故鄰邊長分別為41r和5r的平行四邊形是12階準菱形:
所以答案是:3,12
【考點精析】解答此題的關鍵在于理解菱形的性質的相關知識,掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.
科目:初中數學 來源: 題型:
【題目】問題情境:如圖1,AB∥CD, ,.求度數.
小明的思路是:如圖2,過P作PE∥AB,通過平行線性質,可得 _______.
問題遷移:如圖3,AD∥BC,點P在射線OM上運動, , .
(1)當點P在A、B兩點之間運動時, 、、之間有何數量關系?請說明理由.
(2)如果點P在A、B兩點外側運動時(點P與點A、B、O三點不重合),請你直接寫出、、之間的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】平面直角坐標系中,平行四邊形ABOC如圖放置,點A、C的坐標分別為(0,3)、(﹣1,0),將此平行四邊形繞點O順時針旋轉90°,得到平行四邊形A'B'OC'.
(1)若拋物線過點C,A,A',求此拋物線的解析式;
(2)求平行四邊形ABOC和平行四邊形A'B'OC'重疊部分△OC'D的周長;
(3)點M是第一象限內拋物線上的一動點,問:點M在何處時;△AMA'的面積最大?最大面積是多少?并求出此時M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知四邊形ABCD是正方形,點E、F分別在邊AB、邊BC上,DE⊥AF,DE與AF交于點O,將線段AE沿AF進行平移至FG,過點G作GH⊥AB的延長線于點H.
(1)判斷四邊形BFGH的形狀并證明;
(2)寫出圖中所有面積相等的圖形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校九(1)班學生參加畢業(yè)體考的成績統(tǒng)計如圖所示,請根據統(tǒng)計圖中提供的信息完成后面的填空題(將答案填寫在相應的橫線上)
(1)該班共有______名學生;
(2)該班學生體考成績的眾數是______;男生體考成績的中位數是______;
(3)若女生體考成績在37分及其以上,男生體考成績在38分及其以上被認定為體尖生,則該班共有_______名體尖生.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某餐廳中,一張桌子可坐6人,有如圖所示的兩種擺放方式:
(1)當有n張桌子時,兩種擺放方式各能坐多少人?
(2)一天中午餐廳要接待98位顧客共同就餐,但餐廳只有25張這樣的餐桌.若你是這個餐廳的經理,你打算選擇哪種方式來擺放餐桌?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是某公園里一處矩形風景欣賞區(qū)ABCD,長AB=50米,寬BC=25米,為方便游人觀賞,公園特意修建了如圖所示的小路(圖中非陰影部分),小路的寬均為1米,那小明沿著小路的中間,從出口A到出口B所走的路線(圖中虛線)長為( )
A.100米 B.99米 C.98米 D.74米
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com