【題目】如圖,已知點(diǎn)E,F在直線(xiàn)AB上,點(diǎn)G在線(xiàn)段CD上,ED與FG交于點(diǎn)H,∠C=∠EFG,∠CED=∠GHD.
(1)求證:CE∥GF;
(2)試判斷∠AED與∠D之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)若∠EHF=70°,∠D=30°,求∠AEM的度數(shù).
【答案】(1)證明見(jiàn)解析;(2)∠AED+∠D=180°;(3)∠AEM=100°.
【解析】
(1)根據(jù)同位角相等,兩直線(xiàn)平行,可證CE∥GF;
(2)根據(jù)平行線(xiàn)的性質(zhì)可得∠C=∠FGD,根據(jù)等量關(guān)系可得∠FGD=∠EFG,根據(jù)內(nèi)錯(cuò)角相等,兩直線(xiàn)平行可得AB∥CD,再根據(jù)平行線(xiàn)的性質(zhì)可得∠AED與∠D之間的數(shù)量關(guān)系;
(3)根據(jù)對(duì)頂角相等可求∠DHG,根據(jù)三角形外角的性質(zhì)可求∠CGF,根據(jù)平行線(xiàn)的性質(zhì)可得∠C,∠AEC,再根據(jù)平角的定義可求∠AEM的度數(shù).
(1)∵∠CED=∠GHD,
∴CE∥GF;
(2)∵CE∥GF,
∴∠C=∠FGD,
∵∠C=∠EFG,
∴∠FGD=∠EFG,
∴AB∥CD,
∴∠AED+∠D=180°;
(3)∵∠DHG=∠EHF=70°,∠D=30°,
∴∠CGF=70°+30°=100°,
∵CE∥GF,
∴∠C=180°﹣100°=80°,
∵AB∥CD,
∴∠AEC=80°,
∴∠AEM=180°﹣80°=100°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示邊長(zhǎng)為1的正方形網(wǎng)格中,點(diǎn)A,B,C,D,E均在格點(diǎn)上.若A(﹣2,0),B(1,﹣1).
(1)請(qǐng)?jiān)趫D中建立平面直角坐標(biāo)系并寫(xiě)出:C( , ),D( , ),E( , );
(2)分別連接BD,BE,DE,則三角形BDE的面積為 (直接寫(xiě)出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中,A(0,4),C(3,0),點(diǎn)B在坐標(biāo)軸上,且△ABC的面積為10,則點(diǎn)B的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市在“五水共治”中新建成一個(gè)污水處理廠(chǎng).已知該廠(chǎng)庫(kù)池中存有待處理的污水a噸,另有從城區(qū)流入庫(kù)池的待處理污水(新流入污水按每小時(shí)b噸的定流量增加).若污水處理廠(chǎng)同時(shí)開(kāi)動(dòng)2臺(tái)機(jī)組,需30小時(shí)處理完污水;若同時(shí)開(kāi)動(dòng)3臺(tái)機(jī)組.需15小時(shí)處理完污水.現(xiàn)要求恰好用5個(gè)小時(shí)將污水處理完畢,則需同時(shí)開(kāi)動(dòng)的機(jī)組數(shù)為( )
A.6臺(tái)B.7臺(tái)C.8臺(tái)D.9臺(tái)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將幾個(gè)小正方形與小長(zhǎng)方形拼成一個(gè)邊長(zhǎng)為(a+b+c)的正方形.
(1)若用不同的方法計(jì)算這個(gè)邊長(zhǎng)為(a+b+c)的正方形面積,就可以得到一個(gè)的等式,這個(gè)等式可以為 ;
(2)請(qǐng)利用(1)中的等式解答下列問(wèn)題:
①若三個(gè)實(shí)數(shù)a,b,c滿(mǎn)足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
②若三個(gè)實(shí)數(shù)x,y,z滿(mǎn)足2x×4y÷8z=32,x2+4y2+9z2=45,求2xy﹣3xz﹣6yz的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩家采摘園的圣女果品質(zhì)相同,售價(jià)也相同,節(jié)日期間,兩家均推出優(yōu)惠方案,甲:游客進(jìn)園需購(gòu)買(mǎi)元門(mén)票,采摘的打六折;乙:游客進(jìn)園不需購(gòu)買(mǎi)門(mén)票,采摘超過(guò)一定數(shù)量后,超過(guò)部分打折,設(shè)某游客打算采摘千克,在甲、乙采摘園所需總費(fèi)用為、元,、與之間的函數(shù)關(guān)系的圖像如圖所示.
(1)分別求出、與之間的函數(shù)關(guān)系式;
(2)求出圖中點(diǎn)、的坐標(biāo);
(3)若該游客打算采摘圣女果,根據(jù)函數(shù)圖像,直接寫(xiě)出該游客選擇哪個(gè)采摘園更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是公園的一圓桌的主視圖,MN表示該桌面在路燈下的影子,CD則表示一個(gè)圓形的凳子.
(1)請(qǐng)?jiān)趫D中標(biāo)出路燈O的位置,并畫(huà)出CD的影子PQ;
(2)若桌面直徑與桌面距地面的距離為1.2 m,測(cè)得影子的最大跨度MN為2 m,求路燈O與地面的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)E,F分別在正方形ABCD的邊BC,CD上.若AF平分∠DFE,∠AFE=55°,則∠AEB的度數(shù)為( 。
A.75°B.55°C.80°D.45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:對(duì)任意一個(gè)兩位數(shù),如果滿(mǎn)足個(gè)位數(shù)字與十位數(shù)字互不相同,且都不為零,那么稱(chēng)這個(gè)兩位數(shù)為“迥異數(shù)”.將一個(gè)“迥異數(shù)”個(gè)位數(shù)字與十位數(shù)字對(duì)調(diào)后得到一個(gè)新的兩位數(shù),把這個(gè)新兩位數(shù)與原兩位數(shù)的和與的商記為.
例如:,對(duì)調(diào)個(gè)位數(shù)字與十位數(shù)字得到新兩位數(shù),新兩位數(shù)與原兩位數(shù)的和為,和與的商為,所以.
根據(jù)以上定義,回答下列問(wèn)題:
(1)填空:①下列兩位數(shù):,,中,“迥異數(shù)”為________.
②計(jì)算:_________,________.
(2)如果一個(gè)“迥異數(shù)”的十位數(shù)字是,個(gè)位數(shù)字是,且;另一個(gè)“迥異數(shù)”的十位數(shù)字是,個(gè)位數(shù)字是,且,請(qǐng)求出“迥異數(shù)”和.
(3)如果一個(gè)“迥異數(shù)”的十位數(shù)字是,個(gè)位數(shù)字是,另一個(gè)“迥異數(shù)”的十位數(shù)字是,個(gè)位數(shù)字是,且滿(mǎn)足,請(qǐng)直接寫(xiě)出滿(mǎn)足條件的所有的值________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com