【題目】如圖,在邊長為a的正方形上剪去一個邊長為b的小正方形(ab),把剩下的部分剪拼成一個梯形,分別計算這兩個圖形陰影部分的面積,由此可以驗證的等式是( )

A. a2b2(ab)(ab) B. (ab)2a22abb2

C. (ab)2a22abb2 D. a2aba(ab)

【答案】A

【解析】根據(jù)正方形和梯形的面積公式,觀察圖形發(fā)現(xiàn)這兩個圖形陰影部分的面積=a2-b2=(a+b)(a-b).

正方形中,S陰影=a2-b2;
梯形中,S陰影=2a+2b)(a-b)=(a+b)(a-b);
故所得恒等式為:a2-b2=(a+b)(a-b).
故選C.故選A.

“點睛”此題主要考查了平方差公式.即兩個數(shù)的和與這兩個數(shù)的差的積等于這兩個數(shù)的平方差,這個公式就叫做平方差公式,解題時要運用數(shù)形結合的思想.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】【背景】已知:lmnk,平行線lm、mn、nk之間的距離分別為d1,d2,d3,且d1d3=1,d2=2.我們把四個頂點分別在l,m,n,k這四條平行線上的四邊形稱為“格線四邊形” .

【探究1】(1)如圖1,正方形ABCD為“格線四邊形”,BEl于點E,BE的反向延長線交直線k于點F.求正方形ABCD的邊長.

【探究2】(2)如圖2,菱形ABCD為“格線四邊形”且∠ADC=60°,△AEF是等邊三角形,AEk于點E,∠AFD=90°,直線DF分別交直線l,k于點G、點M.求證:ECDF

【拓展】(3)如圖3,lk,等邊△ABC的頂點A,B分別落在直線lk上,ABk于點B,且∠ACD=90°,直線CD分別交直線l、k于點G、點M,點D、點E分別是線段GMBM上的動點,且始終保持ADAE,DHl于點H.猜想:DH在什么范圍內,BCDE?并說明此時BCDE的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,CD為AB邊上的中線,過點D作DE⊥BC于E,過點C作AB的平行線與DE的延長線交于點F,連接BF,AF.

(1)求證:四邊形BDCF為菱形:

(2)若四邊形BDCF的面積為24,CE:AC=2:3,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】據(jù)統(tǒng)計兩省人口總數(shù)基本相同,2001A省的城鎮(zhèn)在校中學生人數(shù)為156萬,農村在校中學生人數(shù)為72萬;B省的城鎮(zhèn)在校中學生人數(shù)為84萬,農村在校中學生人數(shù)為103李軍同學根據(jù)數(shù)據(jù)畫出下面兩個復合條形統(tǒng)計圖.

______ 更好反映兩省在校中學生總數(shù);

______ 更好地比較省城鎮(zhèn)和農村在校中學生人數(shù);

說說兩種圖的特點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為△ABC外接圓⊙O的直徑,點P是線段CA延長線上一點,點E在圓上且滿足PE2=PAPC,連接CE,AE,OE,OE交CA于點D.
(1)求證:△PAE∽△PEC;
(2)求證:PE為⊙O的切線;
(3)若∠B=30°,AP= AC,求證:DO=DP.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:MON=30°,點A1、A2、A3 在射線ON上,點B1、B2、B3在射線OM上,A1B1A2、A2B2A3、A3B3A4均為等邊三角形,若OA1=a,則A6B6A7的邊長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知P點是∠AOB平分線上一點,PC⊥OA,PD⊥OB,垂足為C、D.

(1)求證:∠PCD=∠PDC;

(2)求證:OP是線段CD的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是(
A.2
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,直線y=﹣x+1與拋物線y=ax2+bx+c(a≠0)相交于點A(1,0)和點D(﹣4,5),并與y軸交于點C,拋物線的對稱軸為直線x=﹣1,且拋物線與x軸交于另一點B.

(1)求該拋物線的函數(shù)表達式;
(2)若點E是直線下方拋物線上的一個動點,求出△ACE面積的最大值;
(3)如圖2,若點M是直線x=﹣1的一點,點N在拋物線上,以點A,D,M,N為頂點的四邊形能否成為平行四邊形?若能,請直接寫出點M的坐標;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案