【題目】如圖,在△ABC中,∠ACB=90°,CD為AB邊上的中線,過點D作DE⊥BC于E,過點C作AB的平行線與DE的延長線交于點F,連接BF,AF.
(1)求證:四邊形BDCF為菱形:
(2)若四邊形BDCF的面積為24,CE:AC=2:3,求AF的長.
【答案】(1) 見解析;(2)
【解析】(1)求出四邊形ADFC是平行四邊形,推出CF=AD=BD,根據(jù)平行四邊形的判定得出四邊形BDCF是平行四邊形,再證CD=BD即可;
(2)設(shè)CE=2x,AC=3x,求出BC=4x,DF=AC=3x,根據(jù)菱形的面積公式求出x,再根據(jù)勾股定理求出AF即可.
解:(1)證明:DE⊥BC,∠ACB=90°,
∴∠BED=∠ACB,
∴DF∥AC,
∵CF∥AB,
∴四邊形ADFC是平行四邊形,
∴AD=CF,
∵D為AB的中點,
∴AD=BD,
∴BD=CF,
∵BD∥CF,
∴四邊形BDCF是平行四邊形,
∵∠ACB=90°,D為AB的中點,
∴DC=BD,
∴四邊形BDCF是菱形;
(2)∵CE:AC=2:3,
∴設(shè)CE=2x,AC=3x,
∵四邊形BDCF是菱形,
∴BE=CE=2x,
∴BC=4x,
∵四邊形ADFC是平行四邊形,
∴DF=AC=3x,
∵四邊形BDCF的面積為24,
∴×BC×DF=24,
∴4x3x=24,
解得:x=2(負(fù)數(shù)舍去),
∴CE=4,DF=6,
∴AC=6,EF=DF=3
作FG⊥AC交AC的延長線于點G,可得矩形ECGF,
∴FG=CE=4,AG=AC+CG=6+3=9,
在Rt△AFG中,
由勾股定理得,AF=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為節(jié)約用電,某市根據(jù)每戶居民每月用電量分為三檔收費.第一檔電價:每月用電量低于240度,每度0.4883元;第二檔電價:每月用電量為240~400度,每度0.5383元;第三檔電價:每月用電量為不低于400度,每度0.7883元.小燦同學(xué)對該市有1000戶居民的某小區(qū)居民月用電量(單位:度)進(jìn)行了抽樣調(diào)查,繪制了如圖所示的統(tǒng)計圖.下列說法不合理的是( )
A. 本次抽樣調(diào)查的樣本容量為50 B. 估計該小區(qū)按第一檔電價交費的居民戶數(shù)最多
C. 該小區(qū)按第二檔電價交費的居民有220戶 D. 該小區(qū)按第三檔電價交費的居民比例約為6%
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知△ABC是等腰三角形,∠BAC=90°,點D是BC的中點,作正方形DEFG,使點A、C分別在DG和DE上,連接AE、BG.
(1)試猜想線段BG和AE的數(shù)量關(guān)系;
(2)如圖②,將正方形DEFG繞點D按逆時針方向旋轉(zhuǎn)α(0°<α≤90°),判斷(1)中的結(jié)論是否仍然成立,證明你的結(jié)論.
(3)若BC=DE=2,在(2)的旋轉(zhuǎn)過程中,求線段AE長的最大值和最小值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)課上,老師提出如下問題:
尺規(guī)作圖:作對角線等于已知線段的菱形.
已知:兩條線段、.
求作:菱形,使得其對角線分別等于和.
小軍的作法如下:
如圖
()畫一條線段等于.
()分別以、為圓心,大于的長為半徑,在線段的上下各作兩條弧,兩弧相交于、兩點.
()作直線交于點.
()以點為圓心,線段的長為半徑作兩條弧,交直線于、兩點,連接、、、.
所以四邊形就是所求的菱形.
老師說:“小軍的作法正確”.
該作圖的依據(jù)是__________和___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:把函數(shù)y=bx+a和函數(shù)y=ax+b(其中a,b是常數(shù),且a≠0,b≠0)稱為一對交換函數(shù),其中一個函數(shù)是另一個函數(shù)的交換函數(shù).比如,函數(shù)y=4x+1是函數(shù)y=x+4的交換函數(shù),等等.
(1)直接寫出函數(shù)y=2x+1的交換函數(shù);_________________;并直接寫出這對交換函數(shù)和x軸所圍圖形的面積為_____________________________;
(2)若一次函數(shù)y=ax+2a和其交換函數(shù)與x軸所圍圖形的面積為3,求a的值.
(3)如圖,在平面直角坐標(biāo)xOy中,矩形OABC中,點C(0, ),M、N分別是線段OC、AB的中點,將△ABD沿著折痕AD翻折,使點B的落點E恰好落在線段MN的中點,點F是線段BC的中點,連接EF,若一次函數(shù)和與線段EF始終都有交點,則m的取值范圍為_____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為a的正方形上剪去一個邊長為b的小正方形(a>b),把剩下的部分剪拼成一個梯形,分別計算這兩個圖形陰影部分的面積,由此可以驗證的等式是( )
A. a2-b2=(a+b)(a-b) B. (a+b)2=a2+2ab+b2
C. (a-b)2=a2-2ab+b2 D. a2-ab=a(a-b)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com