【題目】如圖所示,將形狀、大小完全相同的和線段按照一定規(guī)律擺成下列圖形.1幅圖形中的個(gè)數(shù)為,第2幅圖形中的個(gè)數(shù)為,第3幅圖形中的個(gè)數(shù)為,……,以此類推,解決以下問題:

(1)直接寫出 (用含n的代數(shù)式表示);

(2)猜想是否存在某幅圖中的個(gè)數(shù)為2018,若存在,直接寫出n的值;若不存在,則直接寫出2018至少再加上多少后所得的數(shù)正好是某幅圖中黑點(diǎn)的個(gè)數(shù),并直接寫出此時(shí)n的值;

(3)求出的值.

【答案】(1)a5=35;an=n2+2n;(2)不存在;(3)

【解析】

.

試題(1)首先根據(jù)圖形中“●”的個(gè)數(shù)得出數(shù)字變化規(guī)律,進(jìn)而求出即可.

(2)根據(jù)(1)的結(jié)果可以判斷出結(jié)果;

(3)根據(jù)數(shù)字特點(diǎn),和裂項(xiàng)法求和即可.

試題解析:⑴ 35,

⑵不存在,2018至少再加上6后所得的數(shù)正好是某幅圖中黑點(diǎn)的個(gè)數(shù),此時(shí)n=44;

⑶由(1)得,,,

=

=

=

=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線AB上一點(diǎn)O,OC⊥AB,OD⊥OE, 若∠COE=∠BOD.

(1)求∠COE, ∠BOD, ∠AOE的度數(shù).

(2)若OF平分∠BOE,求∠AOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】生態(tài)公園計(jì)劃在園內(nèi)的坡地上種植一片有A、B兩種樹的混合林,需要購買這兩種樹苗共100棵假設(shè)這批樹苗種植后成活95棵,種植A、B兩種樹苗的相關(guān)信息如下表

1求購買這兩種樹苗各多少棵?

2求種植這片混合林的總費(fèi)用需多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩校分別有一男一女共4名教師報(bào)名到農(nóng)村中學(xué)支教.
(1)若從甲、乙兩校報(bào)名的教師中分別隨機(jī)選1名,則所選的2名教師性別相同的概率是
(2)若從報(bào)名的4名教師中隨機(jī)選2名,用列表或畫樹狀圖的方法求出這2名教師來自同一所學(xué)校的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義一種新運(yùn)算⊙:1⊙3=1×4+3=7; 3⊙(-1)=3×4-1=11;(-5)⊙4=(-5)×4+4=-16; (-4)⊙(-3)=(-4)×4-3=-19.

(1)由以上式子可知:a⊙b= ;

(2)若a⊙(-2b)=4,請(qǐng)計(jì)算(a-b)⊙(2a+b)的值;

(3)若[x⊙(-2)] ⊙ [(-x)⊙2]=6,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形網(wǎng)格中(網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)是1),ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o的直角坐標(biāo)系中解答下列問題:

(1)作出ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°的AB1C1,再作出AB1C1關(guān)于原點(diǎn)O成中心對(duì)稱的A1B2C2

(2)點(diǎn)B1的坐標(biāo)為 ,點(diǎn)C2的坐標(biāo)為

(3)ABC經(jīng)過怎樣的旋轉(zhuǎn)可得到A1B2C2,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正比例函數(shù)y=k1x的圖象與反比例函數(shù)y= 的圖象的一個(gè)交點(diǎn)是(2,3).
(1)求出這兩個(gè)函數(shù)的表達(dá)式;
(2)作出兩個(gè)函數(shù)的草圖,利用你所作的圖形,猜想并驗(yàn)證這兩個(gè)函數(shù)圖象的另一個(gè)交點(diǎn)的坐標(biāo);
(3)直接寫出使反比例函數(shù)值大于正比例函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形紙片ABCD的邊長(zhǎng)為3,點(diǎn)E、F分別在邊BC、CD上,將AB、AD分別沿AE、AF折疊,點(diǎn)B、D恰好都落在點(diǎn)G處,已知BE=1,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P、Q是邊長(zhǎng)為2的菱形ABCD中兩邊BCCD的中點(diǎn),KBD上一動(dòng)點(diǎn),則KP+KQ的最小值為________

查看答案和解析>>

同步練習(xí)冊(cè)答案