【題目】生態(tài)公園計劃在園內(nèi)的坡地上種植一片有A、B兩種樹的混合林,需要購買這兩種樹苗共100棵假設(shè)這批樹苗種植后成活95棵,種植A、B兩種樹苗的相關(guān)信息如下表

1求購買這兩種樹苗各多少棵?

2求種植這片混合林的總費用需多少元?

【答案】1A種樹苗75棵,B種樹苗25棵21950元

【解析】

試題1設(shè)購買A種樹苗x棵,根據(jù)這批樹苗種植后成活95棵,列方程解答即可;2根據(jù)15+3×75+20+4×25計算即可

試題解析:(1設(shè)購買A種樹苗x棵,則購買B種樹苗100-x))棵,

根據(jù)題意得96%x+92%100-x=95,

解得x=75

購買A種樹苗75棵,購買B種樹苗25棵;

2)(15+3×75+20+4×25=1950

種植這片混合林總費用1950元

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程
(1)解方程:x2﹣2x=1;
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知點M(0,2),直線y= x+4與兩坐標(biāo)軸分別交于A,B兩點,P、Q分別是線段OA,AB上的動點,則PQ+MP的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,以大于BF的相同長為半徑畫弧,兩弧交于點P;連接AP并延長交BC于點E,連接EF,得四邊形ABEF.

求證:四邊形ABEF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明在熱氣球A上看到正前方橫跨河流兩岸的大橋BC,并測得B,C兩點的俯角分別為60°和35°,已知大橋BC的長度為100m,且與地面在同一水平面上.求熱氣球離地面的高度. (結(jié)果保留整數(shù),參考數(shù)據(jù):sin35°≈ ,cos35°≈ ,tan35°≈ , ≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國古籍《周髀算經(jīng)》中早有記載“勾三股四弦五”,下面我們來探究兩類特殊的勾股數(shù).通過觀察完成下面兩個表格中的空格(以下a、b、c為Rt△ABC的三邊,且a<b<c):

表一 表二

a

b

c

a

b

c

3

4

5

6

8

10

5

12

13

8

15

17

7

24

25

10

24

26

9

41

12

37

(1)仔細(xì)觀察,表一中a為大于1的奇數(shù),此時b、c的數(shù)量關(guān)系是_____________,

a、b、c之間的數(shù)量關(guān)系是_________________________

(2)仔細(xì)觀察,表二中a為大于4的偶數(shù),此時b、c的數(shù)量關(guān)系是_____________

a、b、c之間的數(shù)量關(guān)系是_________________________;

(3)我們還發(fā)現(xiàn),表一中的三邊長“3,4,5”與表二中的“6,8,10”成倍數(shù)關(guān)系,表一中的“5,12,13”與表二中的“10,24,26”恰好也成倍數(shù)關(guān)系……請直接利用這一規(guī)律計算:在Rt△ABC中,當(dāng),時,斜邊c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程x2﹣(2m﹣1)x+m2﹣1=0的兩實數(shù)根為x1 , x2 , 且x12+x22=3,則m=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將形狀、大小完全相同的和線段按照一定規(guī)律擺成下列圖形.1幅圖形中的個數(shù)為,第2幅圖形中的個數(shù)為,第3幅圖形中的個數(shù)為,……,以此類推,解決以下問題:

(1)直接寫出 , (用含n的代數(shù)式表示);

(2)猜想是否存在某幅圖中的個數(shù)為2018,若存在,直接寫出n的值;若不存在,則直接寫出2018至少再加上多少后所得的數(shù)正好是某幅圖中黑點的個數(shù),并直接寫出此時n的值;

(3)求出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖中的虛線網(wǎng)格是等邊三角形網(wǎng)格,它的每一個小三角形都是邊長為1的等邊三角形.

(1)邊長為1的等邊三角形的高=____;

(2)圖①中的ABCD的對角線AC的長=____;

(3)圖②中的四邊形EFGH的面積=____.

查看答案和解析>>

同步練習(xí)冊答案