【題目】如圖,AD是△ABC的角平分線,線段AD的垂直平分線分別交AB和AC于點(diǎn)E、F,垂足為O,連接DE、DF.
(1)判斷四邊形AEDF的形狀,并證明.
(2)直接寫出△ABC滿足什么條件時(shí),四邊形AEDF是正方形?
【答案】(1)四邊形AEDF是菱形,證明見解析;(2)△ABC中∠BAC=90°時(shí),四邊形AEDF是正方形.
【解析】
(1)由∠BAD=∠CAD,AO=AO,∠AOE=∠AOF=90°證△AEO≌△AFO,推出EO=FO,得出平行四邊形AEDF,根據(jù)EF⊥AD得出菱形AEDF;
(2)根據(jù)有一個(gè)角是直角的菱形是正方形可得∠BAC=90°時(shí),四邊形AEDF是正方形.
解:(1)四邊形AEDF是菱形,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
又∵EF⊥AD,
∴∠AOE=∠AOF=90°
∵在△AEO和△AFO中
∵,
∴△AEO≌△AFO(ASA),
∴EO=FO,
∵EF垂直平分AD,
∴EF、AD相互平分,
∴四邊形AEDF是平行四邊形
又EF⊥AD,
∴平行四邊形AEDF為菱形;
(2)當(dāng)△ABC中∠BAC=90°時(shí),四邊形AEDF是正方形;
∵∠BAC=90°,
∴四邊形AEDF是正方形(有一個(gè)角是直角的菱形是正方形).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
(1)證明:無論m取何值,函數(shù)圖象與x軸都有兩個(gè)不相同的交點(diǎn);
(2)當(dāng)圖象的對(duì)稱軸為直線x=3時(shí),求它與x軸兩交點(diǎn)及頂點(diǎn)所構(gòu)成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)拋物線形的拱形橋洞,橋洞離水面的最大高度為4m,跨度為10m,如圖所示,把它的圖形放在直角坐標(biāo)系中.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)一輛寬為2米,高為3米的貨船能否從橋下通過?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列表格是某學(xué)校女子排球隊(duì)隊(duì)員年齡統(tǒng)計(jì)表:
年齡(歲) | 13 | 14 | 15 | 16 |
人數(shù)(人) | 1 | 2 | 4 | 5 |
(1)該排球隊(duì)隊(duì)員年齡的眾數(shù)是 歲;
(2)事件“從該排球隊(duì)隨機(jī)選擇一名隊(duì)員,其年齡為13歲”發(fā)生的概率為 ;
(3)教練決定從年齡為13歲和14歲的A、B、C三名隊(duì)員中,隨機(jī)選取兩名隊(duì)員進(jìn)行“接發(fā)球”訓(xùn)練,求隊(duì)員A、B同時(shí)被選中的概率.(樹狀圖或列表法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長(zhǎng)為1的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°到正方形AB’C’D’,圖中陰影部分的面積為( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,若點(diǎn)P的橫坐標(biāo)和縱坐標(biāo)相等,則稱點(diǎn)P為等值點(diǎn).例如點(diǎn)
(1,1),(-2,-2),(,),…,都是等值點(diǎn).已知二次函數(shù)的
圖象上有且只有一個(gè)等值點(diǎn) ,且當(dāng)m≤x≤3時(shí),函數(shù) 的最小值為-9,最大值為-1,則m的取值范圍是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2-4x+3.
(1)用配方法求其圖象的頂點(diǎn)C的坐標(biāo),并描述該函數(shù)的函數(shù)值隨自變量的增減而變化的情況;
(2)求函數(shù)圖象與x軸的交點(diǎn)A,B的坐標(biāo),及△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,直線PQ垂直平分AC,與邊AB交于E,連接CE,過點(diǎn)C作CF平行于BA交PQ于點(diǎn)F,連接AF.
(1)求證:△AED≌△CFD;
(2)求證:四邊形AECF是菱形.
(3)若AD=3,AE=5,則菱形AECF的面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊周長(zhǎng)為30米的籬笆圍成.已知墻長(zhǎng)為18米(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊長(zhǎng)為x米.
(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長(zhǎng)不小于8米,這個(gè)苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請(qǐng)說明理由;
(3)當(dāng)這個(gè)苗圃園的面積不小于100平方米時(shí),直接寫出x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com