【題目】如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點D為AB邊上的一點,
(1)求證:△ACE≌△BCD;
(2)若DE=13,BD=12,求線段AB的長.
【答案】(1)證明見解析; (2)AB=17.
【解析】
試題(1)由等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,得出∠BCD=∠ACE,根據(jù)SAS推出△ACE≌△BCD即可;
(2)求出AD=5,根據(jù)全等得出AE=BD=12,在Rt△AED中,由勾股定理求出DE即可.
試題解析:(1)∵△ACB與△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中,∵BC=AC,∠BCD=∠ACE,CD=CE,∴△BCD≌△ACE(SAS);
(2)由(1)知△BCD≌△ACE,則∠DBC=∠EAC,AE=BD=12,∵∠CAD+∠DBC=90°,∴∠EAC+∠CAD=90°,即∠EAD=90°,∵AE=12,ED=13,∴AD==5,∴AB=AD+BD=12+5=17.
科目:初中數(shù)學 來源: 題型:
【題目】一只不透明的袋子中裝有4個大小、質(zhì)地都相同的乒乓球,球面上分別標有數(shù)字1、2、3、4.
(1)攪勻后從中任意摸出1個球,求摸出的乒乓球球面上數(shù)字為1的概率;
(2)攪勻后先從中任意摸出1個球(不放回),再從余下的3個球中任意摸出1個球,求2次摸出的乒乓球球面上數(shù)字之和為偶數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果店以4元/千克的價格購進一批水果,由于銷售狀況良好,該店又再次購進同一種水果,第二次進貨價格比第一次每千克便宜了1元,所購水果重量恰好是第一次購進水果重量的2倍,這樣該水果店兩次購進水果共花去了2000元.
(1)該水果店兩次分別購買了多少元的水果?
(2)在銷售中,盡管兩次進貨的價格不同,但水果店仍以相同的價格售出,若第一次購進的水果有3% 的損耗,第二次購進的水果有4% 的損耗,該水果店希望售完這些水果獲利不低于3780元,則該水果每千克售價至少為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了打造區(qū)域中心城市,實現(xiàn)攀枝花跨越式發(fā)展,我市花城新區(qū)建設(shè)正按投資計劃有序推進.花城新區(qū)建設(shè)工程部,因道路建設(shè)需要開挖土石方,計劃每小時挖掘土石方540m3 , 現(xiàn)決定向某大型機械租賃公司租用甲、乙兩種型號的挖掘機來完成這項工作,租賃公司提供的挖掘機有關(guān)信息如下表所示:
租金(單位:元/臺時) | 挖掘土石方量(單位:m3/臺時) | |
甲型挖掘機 | 100 | 60 |
乙型挖掘機 | 120 | 80 |
(1)若租用甲、乙兩種型號的挖掘機共8臺,恰好完成每小時的挖掘量,則甲、乙兩種型號的挖掘機各需多少臺?
(2)如果每小時支付的租金不超過850元,又恰好完成每小時的挖掘量,那么共有哪幾種不同的租用方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,A(﹣3,﹣2)、B(﹣1,﹣4)
(1)直接寫出:S△OAB= ;
(2)延長AB交y軸于P點,求P點坐標;
(3)Q點在y軸上,以A、B、O、Q為頂點的四邊形面積為6,求Q點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將兩塊全等的含30°角的直角三角板按圖1的方式放置,已知∠BAC=∠B1A1C=30°,AB=2BC.
(1)固定三角板A1B1C,然后將三角板ABC繞點C順時針方向旋轉(zhuǎn)至圖2的位置,AB與A1C、A1B1分別交于點D、E,AC與A1B1交于點F.
①填空:當旋轉(zhuǎn)角等于20°時,∠BCB1= 度;
②當旋轉(zhuǎn)角等于多少度時,AB與A1B1垂直?請說明理由.
(2)將圖2中的三角板ABC繞點C順時針方向旋轉(zhuǎn)至圖3的位置,使AB∥CB1,AB與A1C交于點D,試說明A1D=CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中建立直角坐標系,△AOB的頂點均在格點上,點O為原點,點A、B的坐標分別是A(3,2)、B(1,3).
(1)將△AOB向下平移3個單位后得到△A1O1B1,則點B1的坐標為 ;
(2)將△AOB繞點O逆時針旋轉(zhuǎn)90°后得到△A2OB2,請在圖中作出△A2OB2,并求出這時點A2的坐標為 ;
(3)在(2)中的旋轉(zhuǎn)過程中,線段OA掃過的圖形的面積 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】古希臘著名的畢達哥拉斯學派把1,3,6,10,…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16,…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是( )
A. 9=4+5B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,邊的垂直平分線交于點,邊的垂直平分線交于點,與相交于點,聯(lián)結(jié)、,若的周長為,的周長為.
(1)求線段的長;
(2)聯(lián)結(jié),求線段的長;
(3)若,求的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com