【題目】(9分)已知:如圖,平行四邊形ABCD中,O是CD的中點(diǎn),連接AO并延長(zhǎng),交BC的延長(zhǎng)線(xiàn)于點(diǎn)E.
(1)(4分)求證:△AOD≌△EOC;
(2)(5分)連接AC,DE,當(dāng)∠B=∠AEB= °時(shí),四邊形ACED是正方形?請(qǐng)說(shuō)明理由.
【答案】(1)證明見(jiàn)試題解析;(2)45,理由見(jiàn)試題解析.
【解析】試題分析:(1)利用平行四邊形的性質(zhì)以及全等三角形的判定方法(ASA),得出△AOD≌△EOC;
(2)利用等腰直角三角形的性質(zhì)結(jié)合平行四邊形的判定以及正方形的判定得出即可.
試題解析:(1)∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠ADC=∠DCE,在△AOD和△EOC中,∵∠ADO=∠ECO,DO=CO,∠DOA=∠EOC,∴△AOD≌△EOC(ASA);
(2)當(dāng)∠B=∠AEB=45°時(shí),四邊形ACED是正方形,理由:∵∠B=∠AEB=45°,∴AB=AE,∵△AOD≌△EOC,∴AD=EC,∠DAE=∠AEC=45°,又∵AD∥EC,∴四邊形ACED是平行四邊形,則AD=BC=EC,∴AC⊥EC,∵△ABE是等腰直角三角形,∴AC=EC,∠ACE=90°,∴平行四邊形ACED是正方形.故答案為:45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)A(a﹣2,a)在x軸上,則點(diǎn)B(a﹣1,3)在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一張矩形紙片ABCD中,AD=4cm,點(diǎn)E,F分別是CD和AB的中點(diǎn).現(xiàn)將這張紙片折疊,使點(diǎn)B落在EF上的點(diǎn)G處,折痕為AH.若HG的延長(zhǎng)線(xiàn)恰好經(jīng)過(guò)點(diǎn)D,則CD的長(zhǎng)為( )
A. 2cm B. cm C. 4cm D. cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】公元前6世紀(jì)古希臘的畢達(dá)哥拉斯學(xué)派有一種觀(guān)點(diǎn),即“萬(wàn)物皆數(shù)”,一切量都可以用整數(shù)或整數(shù)比(分?jǐn)?shù))表示,后來(lái),當(dāng)這一學(xué)派中的希帕索斯發(fā)現(xiàn),邊長(zhǎng)為1的正方形的對(duì)角線(xiàn)的長(zhǎng)度不能用整數(shù)或整數(shù)的比表示時(shí),畢達(dá)哥拉斯學(xué)派感到驚恐不安,由此,引發(fā)了第一次數(shù)學(xué)危機(jī),這兒“不能用整數(shù)或整數(shù)的比表示的數(shù)”指的是( )
A.有理數(shù)B.無(wú)理數(shù)C.合數(shù)D.質(zhì)數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一次函數(shù)y=(3﹣k)x﹣k的圖象經(jīng)過(guò)第二、三、四象限,則k的取值范圍是( )
A.k>3
B.0<k≤3
C.0≤k<3
D.0<k<3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義運(yùn)算“△”:對(duì)于任意實(shí)數(shù)a,b且a≥b時(shí),都有a△b=a2﹣ab+b2 , 如5△4=52﹣5×4+42=21,若(x﹣3)△4=21,則實(shí)數(shù)x的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形紙片ABCD的邊長(zhǎng)AB=4,AD=2.將矩形紙片沿EF折疊,使點(diǎn)A與點(diǎn)C重合,折疊后在其一面著色(如圖),則著色部分的面積為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的半圓分別交AC,BC邊于點(diǎn)D,E,連接BD,
(1)求證:點(diǎn)E是的中點(diǎn);
(2)當(dāng)BC=12,且AD:CD=1:2時(shí),求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com