【題目】公元前6世紀(jì)古希臘的畢達哥拉斯學(xué)派有一種觀點,即“萬物皆數(shù)”,一切量都可以用整數(shù)或整數(shù)比(分?jǐn)?shù))表示,后來,當(dāng)這一學(xué)派中的希帕索斯發(fā)現(xiàn),邊長為1的正方形的對角線的長度不能用整數(shù)或整數(shù)的比表示時,畢達哥拉斯學(xué)派感到驚恐不安,由此,引發(fā)了第一次數(shù)學(xué)危機,這兒“不能用整數(shù)或整數(shù)的比表示的數(shù)”指的是(

A.有理數(shù)B.無理數(shù)C.合數(shù)D.質(zhì)數(shù)

【答案】B

【解析】

根據(jù)無理數(shù)的概念作答.

解:整數(shù)屬于有理數(shù),整數(shù)的比是分?jǐn)?shù),屬于有理數(shù),故不能用整數(shù)或整數(shù)的比表示的數(shù)指的是無理數(shù).

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車以35千米/時的速度勻速行駛,行駛路程S(千米)與行駛時間t(時)之間的關(guān)系式為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,△ABC的三個頂點的坐標(biāo)分別為A(﹣13),B(﹣4,0)C(0,0)

⑴畫出將△ABC向上平移1個單位長度,再向右平移5個單位長度后得到的△A1B1C1;

⑵畫出將△ABC繞原點O順時針方向旋轉(zhuǎn)90°得到△A2B2O;

⑶在x軸上存在一點P,滿足點PA1與點A2距離之和最小,請直接寫出P點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形的三個內(nèi)角之比為1∶3∶5,那么這個三角形的最大內(nèi)角為_______;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)中學(xué)生體質(zhì)健康綜合評定成績?yōu)?/span>x分,滿分為100分,規(guī)定:85≤x≤100A級,75≤x≤85B級,60≤x≤75C級,x60D級.現(xiàn)隨機抽取福海中學(xué)部分學(xué)生的綜合評定成績,整理繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中的信息,解答下列問題:

1)在這次調(diào)查中,一共抽取了 名學(xué)生,α= %;

2)補全條形統(tǒng)計圖;

3)扇形統(tǒng)計圖中C級對應(yīng)的圓心角為 度;

4)若該校共有2000名學(xué)生,請你估計該校D級學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在等腰三角形ABC,AC=BC,分別以BCAC為直角邊向上作等腰直角三角形△BCD和△ACE,AEBD相交于點F,連接CF并延長交AB于點G.求證:CG垂直平分AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(9分)已知:如圖,平行四邊形ABCD中,OCD的中點,連接AO并延長,交BC的延長線于點E

1)(4分)求證:△AOD≌△EOC;

2)(5分)連接ACDE,當(dāng)∠B=∠AEB= °時,四邊形ACED是正方形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ab為有理數(shù),若a2=b2,則a、b的關(guān)系是

A.相等B.互為相反數(shù)C.互為倒數(shù)D.相等或互為相反數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知xm=2,xn=3,則x2m+n=_____

查看答案和解析>>

同步練習(xí)冊答案