【題目】已知二次函數(shù)y=x2﹣2mx+m2+m+1的圖象與x軸交于A、B兩點(diǎn),點(diǎn)C為頂點(diǎn).
(1)求m的取值范圍;
(2)若將二次函數(shù)的圖象關(guān)于x軸翻折,所得圖象的頂點(diǎn)為D,若CD=8.求四邊形ACBD的面積.
【答案】
(1)解:∵二次函數(shù)圖象與x軸有兩個(gè)交點(diǎn),
∴△=4m2﹣4(m2+m+1)=﹣4m﹣4>0,
∴m<﹣1;
(2)解:y=x2﹣2m x+m2+m+1=(x﹣m) 2+m+1,
∵CD=8,
∴m+1=﹣4,解得m=﹣5,
∴y=x2+10 x+21,
令y=0,x2+10 x+21=0,解得x1=﹣3,x2=﹣7,則A(﹣3,0),B(﹣7,0)
∴AB=4,
∴S四邊形ACBD=2× ×4×4=16.
【解析】(1)根據(jù)判別式的意義得到△=4m2﹣4(m2+m+1)=﹣4m﹣4>0,然后解不等式即可;(2)先配方得到y(tǒng)=(x﹣m) 2+m+1,則頂點(diǎn)的縱坐標(biāo)為m+1,利用C點(diǎn)和D點(diǎn)關(guān)于x軸對(duì)稱得到m+1=﹣4,解得m=﹣5,所以y=x2+10 x+21,然后解方程x2+10 x+21=0得到A(﹣3,0),B(﹣7,0),再利用三角形面積公式計(jì)算四邊形ACBD的面積.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)圖象的平移的相關(guān)知識(shí),掌握平移步驟:(1)配方 y=a(x-h)2+k,確定頂點(diǎn)(h,k)(2)對(duì)x軸左加右減;對(duì)y軸上加下減,以及對(duì)拋物線與坐標(biāo)軸的交點(diǎn)的理解,了解一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒有交點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)G在對(duì)角線BD上(不與點(diǎn)B,D重合),GE⊥DC于點(diǎn)E,GF⊥BC于點(diǎn)F,連結(jié)AG.
(1)寫出線段AG,GE,GF長(zhǎng)度之間的數(shù)量關(guān)系,并說(shuō)明理由;
(2)若正方形ABCD的邊長(zhǎng)為1,∠AGF=105°,求線段BG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小組在“用頻率估計(jì)概率”的試驗(yàn)中,統(tǒng)計(jì)了某種結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線圖,那么符合這一結(jié)果的試驗(yàn)最有可能的是( )
A. 在“石頭、剪刀、布”的游戲中,小明隨機(jī)出的是“剪刀”
B. 擲一個(gè)質(zhì)地均勻的正方體骰子,落地時(shí)面朝上的點(diǎn)數(shù)是6
C. 一次擲兩枚質(zhì)地均勻的硬幣,出現(xiàn)兩枚硬幣都正面朝上
D. 用2,3,4三個(gè)數(shù)字隨機(jī)排成一個(gè)三位數(shù),排出的數(shù)是偶數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某月的日歷表,在此目歷表上可以用一個(gè)“十”字圈出5個(gè)數(shù).
(1)如圖中四周的4個(gè)數(shù)3、9、17、11的和與中間的數(shù)10有什么數(shù)量關(guān)系?
(2)照此方法,任意圈出的5個(gè)數(shù)是否都具有這樣的數(shù)量關(guān)系?請(qǐng)通過(guò)整式的運(yùn)算說(shuō)明理由.
(3)用(2)的結(jié)論說(shuō)明圈出的5個(gè)數(shù)的和能否等于125?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,直線AB:y=﹣x+b交y軸于點(diǎn)A(0,4),交x軸于點(diǎn)B.
(1)求直線AB的表達(dá)式和點(diǎn)B的坐標(biāo);
(2)直線l垂直平分OB交AB于點(diǎn)D,交x軸于點(diǎn)E,點(diǎn)P是直線l上一動(dòng)點(diǎn),且在點(diǎn)D的上方,設(shè)點(diǎn)P的縱坐標(biāo)為n.
①用含n的代數(shù)式表示△ABP的面積;
②當(dāng)S△ABP=8時(shí),求點(diǎn)P的坐標(biāo);
③在②的條件下,以PB為斜邊在第一象限作等腰直角△PBC,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC 三邊的中線 AD,BE,CF 相交于點(diǎn) G,若 S△ABC=15,則圖中陰影部分面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠B=60°,內(nèi)切圓O與邊AB、BC、CA分別相切于點(diǎn)D、E、F,則∠DEF的度數(shù)為°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某同學(xué)在大樓AD的觀光電梯中的E點(diǎn)測(cè)得大樓BC樓底C點(diǎn)的俯角為45°,此時(shí)該同學(xué)距地面高度AE為20米,電梯再上升5米到達(dá)D點(diǎn),此時(shí)測(cè)得大樓BC樓頂B點(diǎn)的仰角為37°,求大樓的高度BC.
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y= (x>0)的圖象經(jīng)過(guò)矩形OABC對(duì)角線的交點(diǎn)M,分別與AB、BC相交于點(diǎn)D、E.,則下列結(jié)論正確的是(將正確的結(jié)論填在橫線上).
①s△OEB=s△ODB , ②BD=4AD,③連接MD,S△ODM=2S△OCE , ④連接ED,則△BED∽△BCA.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com