【題目】如圖是某月的日歷表,在此目歷表上可以用一個(gè)“十”字圈出5個(gè)數(shù).
(1)如圖中四周的4個(gè)數(shù)3、9、17、11的和與中間的數(shù)10有什么數(shù)量關(guān)系?
(2)照此方法,任意圈出的5個(gè)數(shù)是否都具有這樣的數(shù)量關(guān)系?請(qǐng)通過(guò)整式的運(yùn)算說(shuō)明理由.
(3)用(2)的結(jié)論說(shuō)明圈出的5個(gè)數(shù)的和能否等于125?
【答案】(1)數(shù)3、9、17、11的和與中間的數(shù)10是4倍關(guān)系;(2)任意圈出的5個(gè)數(shù)都具有這樣的數(shù)量關(guān)系;(3)圈出的5個(gè)數(shù)的和不能等于125.
【解析】
(1)計(jì)算出四周的4個(gè)數(shù)的和,與中間的數(shù)進(jìn)行比較即可;(2)設(shè)第二行中間數(shù)為x,則其他四個(gè)數(shù)分別為x﹣7,x﹣1,x+1,x+7,計(jì)算這四個(gè)數(shù)的和為4x,是4的倍數(shù),即可得任意圈出的5個(gè)數(shù)都具有這樣的數(shù)量關(guān)系;(3)根據(jù)(2)的方法可列出方程,求出x的值,再根據(jù)日歷的天數(shù)判斷即可.
(1)∵3+9+11+17=40,
40÷10=4,
∴數(shù)3、9、17、11的和與中間的數(shù)10是4倍關(guān)系;
(2)任意圈出的5個(gè)數(shù)都具有這樣的數(shù)量關(guān)系,
設(shè)第二行中間數(shù)為x,則其他四個(gè)數(shù)分別為x﹣7,x﹣1,x+1,x+7,
∴x﹣7+x﹣1+x+1+x+7=4x,
∴任意圈出的5個(gè)數(shù)都具有這樣的數(shù)量關(guān)系;
(3)x+4x=5x=125,
∴x=25,
∵25為中間數(shù),
∴最大數(shù)為25+7=32,
∵日歷沒(méi)有32日,
∴圈出的5個(gè)數(shù)的和不能等于125.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,線(xiàn)段AM為BC邊上的中線(xiàn).動(dòng)點(diǎn)D在直線(xiàn)AM上時(shí),以CD為一邊在CD的下方作等邊△CDE,連結(jié)BE.
(1)求∠CAM的度數(shù);
(2)若點(diǎn)D在線(xiàn)段AM上時(shí),求證:△ADC≌△BEC;
(3)當(dāng)動(dòng)D在直線(xiàn)AM上時(shí),設(shè)直線(xiàn)BE與直線(xiàn)AM的交點(diǎn)為O,試判斷∠AOB是否為定值?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)AB、CD交于點(diǎn)O,OE平分∠AOD,OF平分∠BOD.
(1)∠AOC=50°,求∠DOF與∠DOE的度數(shù),并計(jì)算∠EOF的度數(shù);
(2)當(dāng)∠AOC的度數(shù)變化時(shí),∠EOF的度數(shù)是否變化?若不變,求其值;若變化,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的袋中有除顏色外其他完全相同的3個(gè)球,每次從袋中摸出一個(gè)球,記下顏色后放回?cái)噭蛟倜,在摸球試?yàn)中得到下表中部分?jǐn)?shù)據(jù):
摸球 總次數(shù) | 40 | 80 | 120 | 160 | 200 | 240 | 280 | 320 | 360 | 400 |
摸到黃球的次數(shù) | 14 | 23 | 38 | 52 | 67 | 86 | 97 | 111 | 120 | 136 |
摸到黃球的頻率 | 35% | 32% | 33% | 35% | 35% |
(1)請(qǐng)將上表補(bǔ)充完整(結(jié)果精確到1%);
(2)制作折線(xiàn)統(tǒng)計(jì)圖表示摸到黃球的頻率的變化情況;
(3)估計(jì)從袋中摸出一個(gè)球是黃球的概率是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知兩條射線(xiàn)OM∥CN,動(dòng)線(xiàn)段AB的兩個(gè)端點(diǎn)A、B分別在射線(xiàn)OM、CN上,且∠C=∠OAB=108°,F(xiàn)在線(xiàn)段CB上,OB平分∠AOF,OE平分∠COF.
(1)請(qǐng)?jiān)趫D中找出與∠AOC相等的角,并說(shuō)明理由;
(2)若平行移動(dòng)AB,那么∠OBC與∠OFC的度數(shù)比是否隨著AB位置的變化而發(fā)生變化?若變化,找出變化規(guī)律;若不變,求出這個(gè)比值;
(3)在平行移動(dòng)AB的過(guò)程中,是否存在某種情況,使∠OEC=2∠OBA?若存在,請(qǐng)求出∠OBA度數(shù);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2﹣2mx+m2+m+1的圖象與x軸交于A、B兩點(diǎn),點(diǎn)C為頂點(diǎn).
(1)求m的取值范圍;
(2)若將二次函數(shù)的圖象關(guān)于x軸翻折,所得圖象的頂點(diǎn)為D,若CD=8.求四邊形ACBD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB∥CD.
(1)判斷∠FAB與∠C的大小關(guān)系,請(qǐng)說(shuō)明理由;
(2)若∠C=35°,AB是∠FAD的平分線(xiàn).
①求∠FAD的度數(shù);
②若∠ADB=110°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)l與△ABC在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形網(wǎng)格中,點(diǎn)A,B,C都為網(wǎng)格線(xiàn)的交點(diǎn).
(1)請(qǐng)畫(huà)出△ABC關(guān)于直線(xiàn)l對(duì)稱(chēng)的△A1B1C1(點(diǎn)A,B,C的對(duì)稱(chēng)點(diǎn)分別為A1,B1,C1).
(2)請(qǐng)畫(huà)出將線(xiàn)段AC向左平移3個(gè)單位,再向下平移5個(gè)單位得到的線(xiàn)段A2C2(點(diǎn)A,C的對(duì)應(yīng)點(diǎn)分別為A2,C2),再以A2C2為斜邊畫(huà)一個(gè)等腰直角三角形A2B2C2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com