【題目】探究問題:
⑴方法感悟:
如圖①,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG,此時(shí)AB與AD重合,由旋轉(zhuǎn)可得:
AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點(diǎn)G,B,F(xiàn)在同一條直線上.
∵∠EAF=45°
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,
∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.
⑵方法遷移:
如圖②,將沿斜邊翻折得到△ADC,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想.
⑶問題拓展:
如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點(diǎn),滿足,試猜想當(dāng)∠B與∠D滿足什么關(guān)系時(shí),可使得DE+BF=EF.請(qǐng)直接寫出你的猜想(不必說明理由)
.
【答案】⑴EAF、△EAF、GF;⑵DE+BF=EF;⑶當(dāng)∠B與∠D互補(bǔ)時(shí),可使得DE+BF=EF.
【解析】
(1)根據(jù)正方形性質(zhì)填空;(2)假設(shè)∠BAD的度數(shù)為,將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到△ABG,此時(shí)AB與AD重合,由旋轉(zhuǎn)可得:AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,結(jié)合正方形性質(zhì)可得DE+BF=EF. ⑶根據(jù)題意可得,當(dāng)∠B與∠D互補(bǔ)時(shí),可使得DE+BF=EF.
⑴EAF、△EAF、GF.
⑵DE+BF=EF,理由如下:
假設(shè)∠BAD的度數(shù)為,將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到△ABG,此時(shí)AB與AD重合,由旋轉(zhuǎn)可得:
AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點(diǎn)G,B,F(xiàn)在同一條直線上.
∵∠EAF=
∴∠2+∠3=∠BAD-∠EAF=
∵∠1=∠2,
∴∠1+∠3=.
即∠GAF=∠EAF
又AG=AE,AF=AF
∴△GAF≌△EAF.
∴GF=EF,
又∵GF=BG+BF=DE+BF
∴DE+BF=EF.
⑶當(dāng)∠B與∠D互補(bǔ)時(shí),可使得DE+BF=EF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線.
(1)當(dāng)時(shí),
①拋物線的對(duì)稱軸為________;
②若在拋物線上有兩點(diǎn),且,則的取值范圍是________;
(2)拋物線的對(duì)稱軸與軸交于點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,將點(diǎn)向右平移3個(gè)單位得到點(diǎn),若拋物線與線段恰有一個(gè)公共點(diǎn),結(jié)合圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在反比例函數(shù)圖象中,△AOB是等邊三角形,點(diǎn)A在雙曲線的一支上,將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)α (0°<α<360° ),使點(diǎn)A仍在雙曲線上,則α=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,點(diǎn)和點(diǎn)分別在軸和軸的正半軸上,的平分線與正比例函數(shù)交于點(diǎn),且與相交于點(diǎn),在軸負(fù)半軸上有一點(diǎn).
(1)如圖1,求證:;
(2)如圖2,過點(diǎn)作,垂足為,連接,求證:;
(3)如圖3,在(2)的條件下,過點(diǎn)作,垂足為點(diǎn),交于點(diǎn),連接,若,,求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的對(duì)稱軸為x=﹣1,且過點(diǎn)(,0),有下列結(jié)論:①abc>0; ②a﹣2b+4c>0;③25a﹣10b+4c=0;④3b+2c>0;其中所有正確的結(jié)論是( 。
A.①③B.①③④C.①②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某市市民上班時(shí)常用交通工具的狀況,某課題小組隨機(jī)調(diào)查了部分市民(問卷調(diào)查表如表所示),并根據(jù)調(diào)查結(jié)果繪制了如圖所示的尚不完整的統(tǒng)計(jì)圖:
根據(jù)以上統(tǒng)計(jì)圖,解答下列問題:
(1)本次接受調(diào)查的市民共有 人;
(2)扇形統(tǒng)計(jì)圖中,扇形B的圓心角度數(shù)是 ;
(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若該市“上班族”約有15萬人,請(qǐng)估計(jì)乘公交車上班的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙C的直徑,M、D兩點(diǎn)在AB的延長線上,E是⊙C的點(diǎn),且DE2=DBDA,延長AE至F,使得AE=EF,設(shè)BF=5,cos∠BED=.
(1)求證:△DEB∽△DAE;
(2)求DA、DE的長;
(3)若點(diǎn)F在B、E、M三點(diǎn)確定的圓上,求MD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線向左平移2個(gè)單位,再向上平移4個(gè)單位得到一個(gè)新的拋物線.
(1)求新的拋物線的解析式.
(2)過作直線,使得直線與新的拋物線僅有一個(gè)公共點(diǎn),求直線的解析式及相應(yīng)公共點(diǎn)的坐標(biāo).
(3)請(qǐng)猜想在新的拋物線上是否有且僅有四個(gè)點(diǎn)、、、使得、、、分別與(2)中的所有公共點(diǎn)所圍成的圖形的面積均為S?若有,請(qǐng)求出S并直接寫出、、、的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com